
AFIT/GE/ENG/99M-02

ASYMMETRIC LOAD BALANCING
ON A HETEROGENEOUS CLUSTER OF PCs

THESIS

Christopher A. Bohn
Captain, USAF

AFIT/GE/ENG/99M-02

Approved for public release; distribution unlimited

\c\(\c^cA\?> \0\

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank) 2. REPORT DATE

March 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Asymmetric Load Balancing on a Heterogeneous Cluster of PCs

6. AUTHOR(S)

Christopher A. Bonn, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
Wright-Patterson AFB OH 45433-7126

S. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GE/ENG/99M-02

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Jeff E. Graham, ASC MSRC PET Director
ASC/HP
2435 Fifth St
WPAFB, OH 45433-7802 COMM: (937)255-3995x231
EMAIL: jeff.graham@msrc.wpafb.af.mil

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

DSN: 785-3995x231

11. SUPPLEMENTARY NOTES

Advisor: Gary B. Lamont
COMM: (937)255-3636x4718
EMAIL: gary.lamont@afit.af.mil

DSN: 785-3636x4718

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

In recent years, high performance computing with commodity clusters of personal computers has become an active area of
research. Many organizations build them because they need the computational speedup provided by parallel processing but
cannot afford to purchase a supercomputer. With commercial supercomputers and homogenous clusters of PCs, applications
that can be statically load balanced are done so by assigning equal tasks to each processor. With heterogeneous clusters, the
system designers have the option of quickly adding newer hardware that is more powerful than the existing hardware. When
this is done, the assignment of equal tasks to each processor results in suboptimal performance. This research addresses
techniques by which the size of the tasks assigned to processors is a suitable match to the processors themselves, in which the
more powerful processors can do more work, and the less powerful processors perform less work. We find that when the
range of processing power is narrow, some benefit can be achieved with asymmetric load balancing. When the range of
processing power is broad, dramatic improvements in performance are realized - our experiments have shown up to 92%
improvement when asymmetrically load balancing a modified version of the NAS Parallel Benchmarks' LU application.

14. SUBJECT TERMS

Parallel Processing, Pile of PCs, Heterogeneous Cluster, Beowulf, Network of Workstations,
Load Balancing

15. NUMBER OF PAGES

201
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 94

The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the United States Air Force,

Department of Defense or the U.S. Government.

AFIT/GE/ENG/99M-02

ASYMMETRIC LOAD BALANCING
ON A HETEROGENEOUS CLUSTER OF PCs

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Christopher A. Bohn, B.S.E.E., M.S.

Captain, USAF

March 1999

Approved for public release; distribution unlimited

AFIT/GE/ENG/99M-02

Approved:

ASYMMETRIC LOAD BALANCING
ON A HETEROGENEOUS CLUSTER OF PCs

Christopher A. Bohn, B.S.E.E., M.S.
Captain, USAF

«^ Gary jSTLamon;

^
. Little, Ph.D., Lt Col, USAF

Member

RuS d. P<U^
Richard A. Raines, Ph.D., Maj, USAF

Member

Z£ F£S i^y
date

date

date

Acknowledgements

I really must first thank my beautiful wife, Caryl, for her caring and understanding.

She kept me sane for the last eighteen months. I could not have done this without her.

Caryl, I love you. My border collie, Oreo, deserves a nod for reminding me that

occasionally you just have to drop what you're doing and run wildly around the room.

I'd also like to thank my advisor, Dr Gary Lamont, and my committee members,

Lt Col Jeffrey Little and Maj Richard Raines. Their patience and guidance have been

instrumental, particularly early in my thesis effort.

I'd also like to thank Capt Lonnie Hammack and Capt Fernando Silva for

conducting the "ping-pong" tests that characterized the ABC's network throughput.

These two and Capt Karl Deerman warrant another "thank you" for acting as sounding-

boards for some of my ideas and providing suggestions for me to consider.

Finally, I'd like to thank the US Air Force for giving me this opportunity.

Christopher A. Bohn

in

Table of Contents

Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables ix
List of Abbreviations x
Abstract xiii
1 .Introduction 1

1.1. The AFIT Bimodal Cluster 1
1.2. Research Overview 3

1.2.1. Rationale 3
1.2.2. Objectives 4
1.2.3. Approach 5

1.3. Document Overview 6
2.Background 9

2.1. Commodity Supercomputing... 9
2.1.1. Networks of Workstations 10
2.1.2. Beowulf-Class Supercomputers 12

2.2. The AFIT Bimodal Cluster - System Description 15
2.3. NAS Parallel Benchmarks 17

2.3.1. LU Simulated CFD Application 20
2.4. Load Balancing 23

2.4.1. Load Balancing-Concept.. 24
2.4.2. Dynamic Load Balancing 25
2.4.3. Asymmetric Static Load Balancing 26
2.4.4. Load Balancing LU 29

2.5. Summary 30
3.Methodology 32

3.1. Construction of the AFIT Bimodal Cluster 32
3.2. Application Selection 35
3.3. LU Modifications 37

3.3.1. Design of Domain Decomposition 38
3.3.1.1. Original Design 38
3.3.1.2. Design Changes 40

3.3.2. Low-Level Design & Implementation 46
3.3.2.1. Low-Level Design of Partitioning and Load Balancing 46
3.3.2.2. Language Selection 49

3.4. Measurement of Compute Node Performance 50
3.4.1. Design 52

3.4.1.1. Amortizing the Computational Cost of Classifying Nodes 52
3.4.1.2. Benchmark Selection 54

iv

3.4.2. Implementation 58
3.4.2.1. Language Selection 58
3.4.2.2. Implementation of NodeMetric Library 61

3.5. Design of Experiments 68
3.6. Summary 73

4.Results & Analysis 74
4.1. One-Processor Results 74
4.2. Two-Processor Results 75

4.2.1. 1x200 1x450 76
4.2.2. 1x333 1x450 79
4.2.3. 1x400 1x450 80

4.3. Four-Processor Results 82
4.3.1. 1x200 1x333 1x400 1x450 83
4.3.2. 1x333 2x400 1x450 86
4.3.3.3x400 1x450 87

4.4. Eight-Processor Results 88
4.4.1. 1x200 1x333 5x400 1x450 89
4.4.2. 1x333 6x400 1x450 92

4.5. Performance Beyond Eight Processors 93
4.6. Other Observations 96

4.6.1. Not-a-Number Exceptions 96
4.6.2. Effect of Non-Unit Stride Memory Access 96
4.6.3. Price-Performance 97
4.6.4. Comparison with Other Platforms 99

4.7. Analysis & Summary 100
5.Conclusions & Recommendations 103

5.1. Load Balancing Conclusions 103
5.2. Future Asymmetric Load Balancing Efforts 104
5.3. Development & Future Directions for the AFIT Bimodal Cluster 106
5.4. Closing Thoughts 107

A. Supplemental Background Material & Analysis 109
A.I.Data Partitioning 109

A. 1.1. Checkerboard Partitioning 110
A.1.2. Striped Partitioning Ill
A.1.3. Choosing a Partitioning Scheme 112

A.l.3.1. Number of Processors to be Utilized 113
A.1.3.2. Communication Overhead 114
A. 1.3.3. Load Balancing 116

A.2. Finite Difference Method 120
B. NAS Parallel Benchmarks - Changes 124

B.l.diff-rNPB-baselineNPB-modO 124
B.2. diff-rNPB-modONPB-modla 127
B.3. diff-rNPB-modlaNPB-mod4.2 131
B.4. diff-rNPB-mod4.2NPB-mod4.3 138

B.5. MPI Wrappers 139
B.5.1. lu_wrapper.c 139
B.5.2. get_name.c 139

C. NodeMetric Source Code 140
C.l. weighnode 140

C.l.l. weighnode.h 140
C.1.2. weighnode.c 142

C.2. metric 150
C.2.1.metric.h 150
C.2.2. metric.c 152

C.3. metricmap 156
C.3.1. metricmap.h 156
C.3.2. metricmap.c 157

C.4. buildmap.c 161
C.5. nodeinfo.h 164
C.6. Makefile 166

D. Tabulated Results 168
D.I. Performance 169
D.2. Partioning 171
D.3. Additional Results Obtained During Development 175

References 176
Vita 185

VI

List of Figures

Figure 1-1. The AFIT Bimodal Cluster, as of 5 Jan 99 2
Figure 2-1. Relaxation of a tile 22
Figure 2-2. "Wavefront" of tile relaxation 23
Figure 2-3. Unbalanced LU.A for 450 MHz Pentium II & 200 MHz Pentium 29
Figure 2-4. Load balanced LU.A for 450 MHz Pentium II & 200 MHz Pentium 30
Figure 3-1. Delayed transmission of partial TCP packets under Linux 34
Figure 3-2. Modification progression of LU, from original to asymmetrically load

balanced implementation 38
Figure 3-3. Z design for original LU partitioning/load balancing 39
Figure 3-4. Z design for final LU partitioning/load balancing 43
Figure 3-5. Supporting functions for Figure 3-4 44
Figure 3-6. Asymmetric load balancing implementation 51
Figure 4-1. Performance with & without load balancing - 2 processors, 1x200 1x450... 77
Figure 4-2. Speedup over best non-load balanced performance - 2 processors,

1x200 1x450 78
Figure 4-3. Performance with & without load balancing - 2 processors, 1x333 1x450... 79
Figure 4-4. Speedup over best non-load balanced performance - 2 processors,

1x333 1x450 81
Figure 4-5. Performance with & without load balancing - 2 processors, 1x400 1x450... 82
Figure 4-6. Speedup over best non-load balanced performance - 2 processors,

1x400 1x450 83
Figure 4-7. Performance with & without load balancing - 4 processors,

1x200 1x333 1x400 1x450 84
Figure 4-8. Speedup over best non-load balanced performance - 4 processors,

1x200 1x333 1x400 1x450 85
Figure 4-9. Performance with & without load balancing - 4 processors,

1x333 2x400 1x450 86
Figure 4-10. Speedup over best non-load balanced performance - 4 processors,

1x333 2x400 1x450 87
Figure 4-11. Performance with & without load balancing - 4 processors, 3x400 1x450. 88
Figure 4-12. Speedup over best non-load balanced performance - 4 processors,

3x400 1x450 89
Figure 4-13. Performance with & without load balancing - 8 processors,

1x200 1x333 5x400 1x450 90
Figure 4-14. Speedup over best non-load balanced performance - 8 processors,

1x200 1x333 5x400 1x450 91
Figure 4-15. Performance with & without load balancing - 8 processors,

1x333 6x400 1x450 92

vn

Figure 4-16. Speedup over best non-load balanced performance - 8 processors,
1x333 6x400 1x450 93

Figure 4-17. Performance in megaflops as a function of number of processors: broadest
combination of processors 94

Figure 4-18. Performance in megaflops as a function of number of processors: fastest
processors 95

Figure 4-19. Performance with rowwise striped & columnwise striped partitioning - 8
processors, 1x200 1x333 5x400 1x450 97

Figure 4-20. Comparison of systems, using LU.A 101
Figure A-l. Unpartitioned data set 109
Figure A-2. Block checkerboard partitioning for eight processors Ill
Figure A-3. Rowwise block spriped partitioning for eight processors 112
Figure A-4. Columnwise block striped partitioning for eight processors 113
Figure A-5. Asymmetric load balancing using block striped partitions on the

x-y plane 117
Figure A-6. Asymmetric load balancing using block checkerboard partitions on the

x-y plane 118
Figure A-7. First-order finite-difference expressions 121
Figure A-8. Second-order finite-difference expressions 122

vm

List of Tables

Table 2-1. Noteworthy PC Clusters 14
Table 2-2. NAS Parallel Benchmarks - Kernels 18
Table 2-3. NAS Parallel Benchmarks - Simulated CFD Applications 18
Table 2-4. NPB Problem Sizes 19
Table 2-5. Navier-Stokes Equations 21
Table 4-1. Price of the AFIT Bimodal Cluster (Linux) 98
Table 4-2. Price-Performance Ratio 99
Table A-l. Features of Checkerboard and Striped Partitioning 110
Table A-2. Advantages and disadvantages to higher-order accuracy with the finite

difference method 120
Table D-l. Non-load balanced performance - power-of-two number of processors 169
Table D-2. Load balanced performance - power-of-two number of processors 170
Table D-3. Load balanced & non-load balanced performance - non-power-of-two number

of processors 171
Table D-4. Two-processor partitioning (1x200 1x450) 171
Table D-5. Two-processor partitioning (1x333 1x450) 171
Table D-6. Two-processor partitioning (1x400 1x450) 171
Table D-7. Three-processor partitioning (1x333 1x400 1x450) 171
Table D-8. Four-processor partitioning (1x200 1x333 1x400 1x450) 172
Table D-9. Four-processor partitioning (1x333 2x400 1x450) 172
Table D-10. Four-processor partitioning (3x400 1x450) 172
Table D-l 1. Seven-processor partitioning (1x333 6x400 1x450) 172
Table D-12. Eight-processor partitioning (1x200 1x333 5x400 1x450) 173
Table D-13. Eight-processor partitioning (1x333 6x400 1x450) 173
Table D-14. Nine-processor partitioning (2x333 6x400 1x450) 173
Table D-15. Ten-processor partitioning (3x333 6x400 1x450) 173
Table D-16. Eleven-processor partitioning (1x200 3x333 6x400 1x450) 173
Table D-17. Eleven-processor partitioning (4x333 6x400 1x450) 174
Table D-18. Twelve-processor partitioning (1x200 4x333 6x400 1x450) 174
Table D-l9. Results collected during development, using NPB-serial, hub,

and switch 175

IX

List of Abbreviations

ABC AFIT Bimodal Cluster
AFIT Air Force Institute of Technology
AFRL Air Force Research Laboratory
AMD Advanced Micro Devices
ASCI Accelerated Strategic Computing Initiative
ASCII American Standard Code for Information Interchange
BST Binary Search Tree
CCOTS Commodity-Commercial-off-the-Shelf
CFD Computational Fluid Dynamics
COTS Commercial-off-the-Shelf
COW Cluster of Workstations
CRCW Concurrent-Read, Concurrent-Write
CREW Concurrent-Read, Exclusive-Write
CTA Computational Technology Area
DCPC Dedicated Cluster Parallel Computer
DEC Digital Equipment Corporation
DoD Department of Defense
DoE Department of Energy
DRAM Dynamic Random Access Memory
DSM Distributed Shared-Memory
ERCW Exclusive-Read, Concurrent-Write
EREW Exclusive-Read, Exclusive-Write
FDM Finite Difference Method
FFT Fast Fourier Transform
flops Floating Point Operations per Second
FPU Floating Point Unit
FSF Free Software Foundation
GNU GNU's not UNIX
HP Hewlett-Packard
HPCM High Performance Computing Modernization
IA Intel Architecture instruction set
IBM International Business Machines
ICN Interconnection Network
ILP Instruction-Level Parallelism
LANL Los Alamos National Laboratory
MCSE Microsoft Certified System Engineer
MIMD Multiple Instruction Stream-Multiple Data Stream
MIPS Million Instructions per Second
MISD Multiple Instruction Stream-Single Data Stream

MPI Message Passing Interface
MPP Massively Parallel Processors
NaN Not-a-Number
NAS National Aerospace Simulation Facility
NASA National Aeronautics and Space Administration
NFS Network File System
NIS Network Information Service
NORMA No Remote Memory Access
NOW Network of Workstations
NPB NAS Parallel Benchmarks
NSF National Science Foundation
NUMA Non-Uniform Memory Access
OS Operating System
PC Personal Computer
PoPC Pile of PCs
PDE Partial Differential Equation
PRAM Parallel Random Access Machine
PVM Parallel Virtual Machine
QUIPS Quality Improvements per Second
RAM Random Access Machine
RAM Random Access Memory
SGI Silicon Graphics, Incorporated
SIMD Single Instruction Stream-Multiple Data Stream
SISD Single Instruction Stream-Single Data Stream
SMP Symmetric Multiprocessor
SPMD Single Program-Multiple Data
SDRAM Synchronous DRAM
SRAM Static Random Access Memory
SSOR Successive Symmetric Over-Relaxation
UMA Uniform Memory Access
UML Unified Modeling Language
UNITY Unbounded Nondeterministic Iterative Transformations
US United States
VLIW Very Large Instruction Word
VM Virtual Memory

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

Abstract

In recent years, high performance computing with commodity clusters of personal

computers has become an active area of research. Many organizations build them because

they need the computational speedup provided by parallel processing but cannot afford to

purchase a supercomputer.

With commercial supercomputers and homogenous clusters of PCs, applications

that can be statically load balanced are done so by assigning equal tasks to each processor.

With heterogeneous clusters, the system designers have the option of quickly adding

newer hardware that is more powerful than the existing hardware. When this is done, the

assignment of equal tasks to each processor results in suboptimal performance.

This research addresses techniques by which the size of the tasks assigned to

processors is a suitable match to the processors themselves, in which the more powerful

processors can do more work, and the less powerful processors perform less work. We

find that when the range of processing power is narrow, some benefit can be achieved with

asymmetric load balancing. When the range of processing power is broad, dramatic

improvements in performance are realized - our experiments have shown up to 92%

improvement when asymmetrically load balancing a modified version of the NAS Parallel

Benchmarks' LU application.

xni

THIS PAGE INTENTIONALLY LEFT BLANK

XIV

/„ Introduction

Traditionally, supercomputers are designed with the objective of achieving the

greatest computational performance physically possible; the the U.S. Department of

Energy's (DoE) Accelerated Strategic Computing Initiative (ASCI) [23] is the current

embodiment of this niche. At the other extreme has been low-cost computer designs,

where the performance is subordinate to the end-user price; commodity personal

computers (PC) traditionally filled this role. Between the two lay the designs that focus

on the price/performance ratio, exemplified by scientific workstations [35:17]. Advances

in the performance of commodity PCs and commodity networks without corresponding

increases in price led to the discovery that supercomputing performance can be realized

with clusters of PCs, at a price/performance ratio an order of magnitude better than is

possible with typical supercomputers [85]. The AFIT Bimodal Cluster (ABC) is one such

system.

1.1. The AFIT Bimodal Cluster
In the spring of 1998, motivated by AFIT's previous experience with networks of

workstations (NOWs) [31][102] and by the Beowulf Project [53][72][84][85][94], a

group of AFIT students under the direction of Professor Gary Lamont began construction

on the AFIT Bimodal Cluster for computer architectural research. Such an effort

indirectly supports the US National Science Foundation (NSF) Grand Challenge problems

[60] and the Department of Defense High Performance Computing Modernization (DoD

HPCM) Computational Technology Areas (CTAs) [38].

The ABC is a "Pile of Personal Computers" (PoPC) that operates under both

Windows NT and Linux operating systems (OS) and is intended to evolve over time as

additional hardware and software became available. The inaugural parallel code ran on the

evening of 19 May 1998 using four 333 MHz Intel Pentium II uniprocessor nodes

interconnected with a 100BaseT Fast Ethernet hub.

Figure 1-1. The AFIT Bimodal Cluster, as of 5 Jan 99.

An early decision was that future expansion of the ABC would not be limited due

to previous design decisions; as such, the ABC's hardware would be heterogeneous.

Since the project was begun, the ABC has grown to twelve nodes, including the original

four, six 400 MHz Pentium IIs, a 450 MHz Pentium II, and a 200 MHz Pentium; further,

the Fast Ethernet hub has been replaced with a Fast Ethernet switch (Figure 1-1). A

detailed description and development discussion of the ABC can be found in Sections 2.2

and 3.1.

A consequence of this decision is that the performance realized by newer hardware

would be limited by the performance the older hardware could offer. If workloads were

matched to the processors' capabilities, then this limitation would be overcome and the

older hardware would continue to be able to contribute to the solution of computational

challenges. In this fashion, obsolescence of older technologies would be delayed, further

reducing the cost of high performance computing.

1.2. Research Overview

1.2.1. Rationale
One field of study that includes both Grand Challenge and CTA efforts is

computational fluid dynamics (CFD) [5] [36]. CFD has a number of research priorities

that include parallel processing and turbulence modeling [2]. In particular, the CFD

investigation of turbulence induced by surface roughness in high-speed airflows using both

1 "Heterogeneous" has different connotations, ranging from different underlying architectures to different
user loads. In the context of this thesis, the ABC is heterogeneous in that the nodes have processors
clocked at different rates, that the nodes have different implementations of the Intel Architecture
instruction set (IA), and that the memories are different sizes and are clocked at different rates. The ABC
is also heterogeneous in that two distinct operating systems are used, though only Linux is within the
scope of this thesis effort.

windtunnels and CFD modeling is a current area of research at AFIT in the Department of

Aeronautics and Astronautics. These researchers are addressing the critical high-speed

CFD problem where existing CFD high-speed turbulence models are incorrect. This is

because the nondeterministic nature of turbulence has led to time-averaged analysis, rather

than instantaneous analysis, and further, the data for high-speed turbulence generally is

extrapolated from low-speed incompressible turbulence models [49:1-6].

1.2.2. Objectives

The research described in this document is not intended to advocate the use of

PoPCs en lieu of commercial supercomputers. Rather, given that commodity clusters of

PCs do exist, we address the issue of how to make more efficient use of these clusters. As

a point of comparison, though, we do cite some reported results of our test application on

other platforms.

Likewise, this thesis effort does not address any new mathematical modeling

techniques in the CFD realm, but rather supports CFD research by establishing

computational techniques to make more optimal use of a PoPC. In particular, this effort

focuses on optimizing a specific CFD application on the ABC and on heterogeneous

parallel architectures in general.

In the interest of focusing on the parallel architecture problem and not on the fluid

dynamics problem, we make use of a well-known CFD benchmark [99] [10], described in

Section 2.3. The use of a CFD problem domain is entirely appropriate, as the technique

used for computational fluid dynamics is applicable to other problem domains as well.

These other problem domains not only include problems solved similarly to CFD, such as

computational electromagnetics [3] [37], but also any data-decomposed supercomputing

problem. The benchmark used in this thesis effort is appropriate since it is designed

specifically to mimic the computation and communication patterns of computational fluid

dynamics applications [75:2].

Thus, the specific objectives of this research are:

a) Develop an algorithm to modify the static partitioning of a data-decomposed parallel

application at run-time from a symmetric decomposition to an asymmetric

decomposition;

b) Develop techniques to measure the relative computational capabilities of the nodes in a

heterogeneous cluster of PCs;

c) Incorporate the algorithm and measurement software into a CFD application;

d) Provide a statistical analysis of the resulting performance and a comparison with other

platforms.

As a result of this research, future computational scientists should be able to take

advantage of the capabilities of the newest technologies while still using older

technologies. This, in turn, delays the obsolescence of equipment in a field where

capabilities double every eighteen months.2

1.2.3. Approach

The first step in this journey was the construction of the ABC PoPC. The author

of this document undertook the responsibility of the physical construction, and he was

2 Generally speaking, Moore's Law is invoked when expressing the fact that computer systems improve at
an exponential rate. More specifically, Moore's Law states that the logic capacity of silicon doubles about
every 18 months, and the law has often been extended to include microprocessor performance [40] [67].

assisted by the other students in the project. The author also assumed responsibility as the

Linux system administrator, learning this role along the way.

The next task was the selection of the CFD application on which to test the

heterogeneous load balancing algorithm, detailed in Section 3.2. Studying the design of

the application was necessary to understand the assumptions implicit in its encoding and

how its symmetric data decomposition is defined. After this, we designed and

implemented the necessary changes to the application to permit asymmetric load

balancing. Concurrent with the development of the load balancing algorithm was the

design and implementation of a library that the load balancing algorithm uses to assess the

capabilities of the compute nodes. We then designed and conducted experiments to test

the modifications and statistically assessed the results to determine if and how much the

changes improve the performance of the application on a heterogeneous cluster.

1.3. Document Overview
The remainder of this document is organized thus:

Chapter n provides the background necessary to understand this thesis effort.

This begins with a discussion on commodity supercomputers and the factors that led to

them. This discussion then leads into a more detailed description of the system used for

this thesis effort. Next, the application that was modified for the experiments is described.

Finally, a discussion on load balancing is offered, including an analogy to convey the

concept of load balancing, previous load balancing efforts, and why load balancing is

important in this case. Supplemental background material can be found in Appendix A.

Chapter in details the approach used in this enterprise. The chapter begins by

explaining how we selected the experimental application, and describes the process by

which the application was modified to implement asymmetric load balancing. Next, the

design and implementation of the library that provides the load balancing algorithm with

the necessary information is outlined. Finally, we discuss how we tested the load

balancing techniques.

Chapter iv provides the results and analysis of those tests. The performance of

the application in the major tests is examined, as is the improvement over the non-load

balanced performance. The scalability of the application on the ABC, both before and

after load balancing, is also addressed. Tables of the raw data are available in

Appendix D.

Chapter v offers conclusions about asymmetric load balancing and the different

weighting approaches tested. A discussion on future directions is also provided for both

asymmetric load balancing research and for the growth of the AFIT Bimodal Cluster.

Appendix A provides additional background material on data partitioning

approaches and the finite difference method of solving systems of partial differential

equations (PDE), that is not vitally necessary to understand this document but may help

the interested reader who is unfamiliar with concepts tangential to this thesis effort.

Appendix B lists the "diff' files for the application used in the experiments. Full

listings of the source code is impractical; however, the UNIX diff command [30:2-34

to 2-35] permits a listing of only the changes between the original code and the modified

code. The patch command [93] can then be used to reconstruct the new code from the

original,3 or vice-versa. Here, the list of changes allows the readership to study the code

implementing the load balancing schemes described in Sections 3.3 and A.l.

Appendix C lists the source code that implements the design in Section 3.3.2.2 to

measure the relative capabilities of the compute nodes.

Appendix D is a repository for tables of the results of the experiments. Included

are the performance values for each of the experiments, as well as the data partition sizes

for each of the experiments.

Throughout this document, the assumptions about readership are:

a) Understanding of computer architecture.

b) Understanding of algorithms.

c) Familiarity with basic parallel & distributed programming concepts.

Available from [99].

//. Background

This chapter provides the reader with the appropriate background to understand

the necessity, approach, and results of this thesis effort. A description of commodity

supercomputing is provided, along with explanations of why commodity supercomputing

has become an important area of research. Next, material directly relevant to this thesis

investigation is described: a description of the system used for the experiments, an outline

of the NAS Parallel Benchmarks [99], which includes the application modified for the

experiments, and an explanation of load balancing and why it can offer a dramatic

performance improvement on a heterogeneous platform. The material presented does not

include computer architecture [64][35], algorithms [16], basic parallel & distributed

processing concepts [48] [4], fluid dynamics [42], or computational fluid dynamics [7]; the

reader who is unfamiliar with a concept may find explanations in Appendix A or in the

references.

2.1. Commodity Supercomputing
Massively parallel processor (MPP) machines are those systems designed for very-

high-end applications that demand the highest computational and interprocessor

communcation capabilities. An MPP uses commodity processors on the nodes,

interconnected by a high-bandwidth, low-latency network. MPPs can be scaled up to

hundreds of nodes, and MPPs with thousands of nodes are not unheard-of [43:28].

While there is clearly a continuing demand for MPPs, they suffer from weaknesses

that are not shared by new classes of supercomputers. For example, an MPP design takes

up to two additional years of engineering effort than is required to develop desktop

workstations from the same components [8:55]. At the current rate of performance

increase, this yields performances about half those possible if "just-in-time" configuration

were possible. This extra engineering effort (and extra development costs) is not only in

the hardware design, but also due to a parasitic redesign of the OS and other software -

the system software developed for a workstation using a certain processor is suboptimal

for an MPP node, and drivers for the unique hardware configurations must be thoroughly

tested [8:55-56][94].

Ten years ago, Gordon Bell predicted that the diseconomy of scale for

supercomputers would lead to only the largest applications getting executed on systems

with the most computational power. More and more challenging applications being

investigated by budget-restricted researchers would be performed on distributed lower-

end computers working in concert [12:1094-1095,1100]. Five years ago, technological

advances resulted in the initiation of two projects that would bring supercomputing

capabilities to researchers on budgets. They were the Berkeley NOW Project [8] and the

NASA Gigaflops Workstation Project4 [84].

2.1.1. Networks of Workstations

While parallel computing on clusters of workstations (COWs) using commercial-

off-the-shelf (COTS) equipment has been around since 1991 [8:56], advances in processor

and network technology led a team at the University of California at Berkeley to

undertake a massive Network of Workstations (NOW) project in 1994 with the overall

4 Often referred to as "The Beowulf Project."

10

objective of making a system comparable in performance to supercomputers at that time.

The specific objectives of the investigation were:

a) Use of the aggregate DRAM among the workstations as backing store for virtual

memory (VM), in lieu of using a hard disk;

b) Allowing workstations access to each others' file caches;

c) Use of the aggregate disk space among the workstations as a redundant array of

independent disks (RAID);

d) Development of a low-overhead, low-latency communication library to replace the

Parallel Virtual Machine (PVM) library;

e) The impact that local sequential jobs and spawned parallel processes have on each

other when workstations are available for both interactive use and supercomputing;

and

f) A robust global operating system for the NOW, built on top of the native OS,

providing a "guarantee" of stand-alone workstation performance or better to every

user

[8:56-62].

In 1996, to study the utility of a COTS NOW in meeting the US Air Force's high

performance computing needs, particularly in the field of digital signal and image

processing, students at AFIT constructed a COW consisting of five Sun Ultra Sparc Is

and an Ultra Sparc 2, networked by lOBaseT switched Ethernet or by Myrinet [31][102].

11

2.1.2. Beowulf-Class Supercomputers

At the same time the Berkeley NOW Team began its investigations, the Earth and

Space Science division at NASA's Goddard Space Flight Center initiated the Gigaflops

Workstation Project with the mandate of developing a "Gigaflops Scientific Workstation"

costing no greater than $50,000, which was then the price of a high-end scientific

workstation. The architects of the prototypical system, "Beowulf,"5 kept the price under

$50,000 by using only commodity components6 and open-source, free-license software7

that allowed optimization of the OS (Linux) for the architecture and application, though it

achieved only 60 Mflops [84]. By 1996, though, the combined benefits of more powerful

commodity processors, less expensive high-speed networks, and free software permitted

Beowulf-class system constructed from sixteen Intel Pentium Pro machines networked by

dual 100BaseT switched Fast Ethernets to sustain 1.25Gflops for $50,000 [72].

In the years since Beowulf was demonstrated, government research laboratories,

academic institutions, and commercial vendors throughout the world have constructed

Beowulf-class systems and PoPC's,8 taking advantage of the very low price afforded by

the economies of scale available from commodity PCs & networks and from free-license

software. While most commonly implemented with Intel x86 processors, many

5 There is no particular significance to associating the name with the Beowulf legend, other than "it just
sounded cool" [13].
6 Sixteen Intel 80486DX4-based personal computers interconnected with lOBaseT Ethernet and 10Base2
channel-bonded Ethernet.
7 The issue of free vs. proprietary software and open-source vs. closed-source are beyond the scope of this
thesis (as is the debate over "free software" vs. "open-source software"), except to emphasize that free
software permits customization of the OS and device drivers, reduces the expense of building a large
system, and uses a development model that assures rapid identification and correction of bugs. The
interested reader should see [68] [69] [90].
8 The exact definition of a Beowulf is a subject of some debate [13] [66]. "PoPC" is a more general system
description than "Beowulf," and does not specify that a single-system image be maintained, nor does a
free operating system need be used [50].

12

Beowulves are constructed with DEC Alpha processors [13]. Less commonly

implemented, though occasionally discussed are systems using IBM/Motorola PowerPC,

Sun SPARC, Motorola 68k, and Acorn ARM processors [52].

Trying to determine precisely how many such systems exist is not easy since most

are constructed by the researchers themselves, rather than purchased fully assembled from

supercomputer vendors. There are indicators, however. The union of three websites

[24] [52] [71] and [28] [47] [79] [73] [87] indicate there are at least 78 clusters at 60 sites

using Linux, Solaris, and Windows NT.9 There are at least three commercial vendors of

high performance clusters, Alta Technology [6], DCG Computers [21], and Paralogic

[63]. Finally, the Beowulf Mailing List [13] has a total of 762 subscribers from 644

internet domains [55]. Examining several sources [24][28] [52] [55] [79] [71] [73] [87]

reveals there are at least nineteen countries with high performance clusters.10 Some of the

more notable systems are listed in Table 2-1.

Beowulf defines a genre of supercomputers known for their price-to-performance

ratios. In 1997, the Gordon Bell Prize for Price/Performance was awarded to a 32-

processor Pentium Pro-based Beowulf11 that sustained $47/Mflop on an n-body treecode

[95]. More recently, a 70-processor DEC Alpha-based Beowulf, DoE's "Avalon," took

second-place in the 1998 Gordon Bell Prize in the same category after sustaining

9 Does not include "enterprise clusters" designed to provide fail-over and similar high-reliability services.
10 Countries known to have PoPCs: Australia, Belgium, Brazil, Canada, Czech Republic, France,
Germany, India, Iran, Israel, Italy, Japan, Spain, Sweden, Switzerland, Taiwan, Thailand, the United
Kingdom, and the United States.
11 DoE's 16-processor "Loki" and the California Institute of Technology's 16-processor "Hyglac"
networked together.

13

$15/Mflop on molecular dynamics code, losing out to an application-specific computer

[96][41].

Table 2-1. Noteworthy PC Clusters.

Name
Location

URL

Processors
Network

Significance

PAPERS portable demonstrator
Purdue University
http://garage.ecn.purdue.edu/~papers

4 80486
PAPERS (experimental custom

network)

20-pound portable cluster

Stone SouperComputer
Oak Ridge National Laboratory
http://www.esd.ornl.gov/facilities/

beowulf/

126 (mostly 80486; some
Pentium)

Ethernet

All nodes are "surplus"
desktop computers. "Zero
dollars per node."

Megalon
Sandia National Laboratory
http://megalon.ca.sandia.gov/

56 Pentium Pro
Fast Ethernet

14 nodes, each 4-way SMP

theHive
Goddard Space Flight Center
http://newton.gsfc.nasa.gov/thehive/

128 Pentium Pro
Fast Ethernet

64 nodes, each 2-way SMP.
First to exceed 100
processors.

Avalon
Los Alamos National Laboratory
http://cnls.lanl.gov/avalon/

140 Alpha 21164
Fast Ethernet with Gb Ethernet

cross-links

First on Top500 list. Currently
#113onTop5001ist.

C-Plant
Sandia National Laboratory
http://www.cs.sandia.gov/cplant/

400 Alpha 21164
Myrinet

Currently #97 on Top500 list.

NT SuperCluster
Univeristy of Illinois at Champaign-

Urbana
http://www-esag.cs.uiuc.edu/

projects/clusters .html

256 Pentium II
Myrinet

128 nodes, each 2-way SMP.
Large-Scale Windows NT
cluster.

CLOWN
University of Paderborn
http://www.linux-magazin.de/

cluster/index.en.html
http://www.heise.de/ix/aitikel/E7

1999/01/010/

512 x86 (Pentium,
Pentium Pro, Pentium II)
and 60 Alpha 21x64.

Fast Ethernet with Gb Ethernet
cross-links

Assembled in 12 hours.
Executed "real-world" code
and benchmarks, and
disassembled same weekend
(5-6 Dec 98).

While Beowulf designs give researchers "fantastic" price/performance ratios, they

also can bring high performance as well. In June 1988, the supercomputing community

observed that Beowulves can compete with traditional supercomputers in terms of raw

14

performance: the judges of the Top50012 list ranked Avalon as the 315th most powerful

supercomputer in the world due to its 19.2 Gflops performance on the parallel UNPACK

benchmark [25]. Since then, DoE doubled the number of Avalon's processors and added

more memory to the existing nodes, bringing its LINPACK performance to 48.6 Gflops and

outperforming all but 112 of the world's supercomputers. Meanwhile, another DoE

cluster of commodity Alpha PCs interconnected with the proprietary Myrinet [59]

network achieved 54.2 Gflops and was ranked number 97 on the November 1998 Top500

list [26].

To investigate the usefulness of PoPC's for DoD applications, students in AFIT's

parallel & distributed computing laboratory began work in 1998 on the AFIT Bimodal

Cluster.

2.2. The AFIT Bimodal Cluster - System Description
The ABC is a continuously-evolving PoPC built with the just-in-time approach to

hardware configuration. It differs from a Beowulf-class supercomputer in that

a) it hosts a proprietary, closed-source operating system (Windows NT) in addition to a

free-license, open-source operating system (Linux), and

b) a single-system image is not maintained.

The ABC can be booted under either of two operating systems. All compute

nodes but one, have Microsoft Windows NT13 4.0 (SP4) [56] and Linux 2.0.33 [70] (with

Beowulf [54] enhancements) installed and configured for cluster computing; the remaining

12 A list compiled twice each year of the 500 most powerful supercomputers, as ranked by the LINPACK

benchmark [89].
13 Three with Windows NT Server, and all others with Windows NT Workstation

15

node has only Linux installed. This last node is a nineteen-month-old14 personal computer

already at AFIT that was donated to the project; since we have not yet purchased a

Windows NT license for it, it has only Linux installed.

Because just-in-time configuration is used, the capabilities of each node are, in

general, different from the other nodes. In its current configuration (Figure 1-1), the ABC

is built from twelve uniprocessor nodes interconnected by a 100 Mbps Fast Ethernet

switch. One of these nodes uses a 200 MHz Intel Pentium15 processor; four use 333 MHz

Intel Pentium II16 processors; six use 400 MHz Pentium II processors; and one uses a

450 MHz Pentium II processor.

The ABC's interconnection network is 100 Mbps Full-Duplex Fast Ethernet, using

an Intel Express 510T switch. The 510T's switching fabric has an internal capacity of

6.3 Gbps, providing an effective aggregate network capacity of 800 Mbps [45:78].

The memory configuration of the ABC is as diverse as the processor configuration.

One node has 32 MB 15 ns DRAM, three have 128 MB 15 ns SDRAM, one has 256 MB

15 ns SDRAM, and seven have 128 MB 10 ns SDRAM. This gives it an aggregate

1.53 GB of distributed memory.

Several tools are available; for this research, the Free Software Foundation (FSF)

GNU egcs 1.0.2 compiler suite [19], particularly the egcs implementations of gcc and

14 According to AFIT/SC's records, the computer was purchased in August 1997; it was added to the ABC
seventeen months later in January 1999. At the time of publication, two additional months have passed.
15 For a description of the Pentium design, see [14:679-696].
16 For a detailed description of the Pentium II design, see [58].

16

g77, are used with the MPICH 1.1.0 [9] implementation of MPI. Details on which

processors were used can be found in Section 3.5.

Table 2-2. Characteristics of ABC Nodes.

Node Date Installed Processor Memory Operating System
ABC01 April 1998 333 MHz

Pentium II
128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Server
Linux 2.0.33

ABC02 April 1998 333 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Server
Linux 2.0.33

ABC03 April 1998 333 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC04 April 1998 333 MHz
Pentium II

256 MB SDRAM
256 MB swapspace

Windows NT 4.0 Server
Linux 2.0.33

ABC05 August 1998 400 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC06 August 1998 400 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC07 August 1998 400 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC08 August 1998 400 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC09 August 1998 400 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC10 August 1998 400 MHz
Pentium II

128 MB SDRAM
128 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC11 December 1998 450 MHz
Pentium II

128 MB SDRAM
256 MB swapspace

Windows NT 4.0 Workstation
Linux 2.0.33

ABC12 January 1999 200 MHz
Pentium

32 MB DRAM
64 MB swapspace

Linux 2.0.33

2.3. NAS Parallel Benchmarks
The original NAS Parallel Benchmarks (NPB) were developed at NASA Ames

Research Center in 1991 as problem specifications, which researchers and supercomputer

vendors could then implement. The five kernels (Table 2-3) and three simulated CFD

applications (Table 2-4) in NPB were intended to allow demonstrations of systems'

suitability for aerophysics applications. Each of the kernels focused on a particular type of

17 -03 optimization for C and -O optimization for Fortran.

17

numerical computation, while the simulated applications were specified such that they

represent data structures, data movement, and computational techniques that are typically

found in real CFD applications [75:2].

Table 2-3. NAS Parallel Benchmarks - Kernels.

Benchmark Name Abb. Description
Embarassingly Parallel EP Accumulate 2D statistics of large number of pseudorandom numbers

Multigrid MG Solved 3D Poisson PDE, with constant coefficients
Congjugate Gradient CG Computes approximation to smallest eigenvalue of large, sparse matrix

FFTPDE FT Solves 3D PDE using FFTs
Integer Sort IS Sorts array of integers

[75:15-16]

Table 2-4. NAS Parallel Benchmarks - Simulated CFD Applications.

Benchmark Name Abb. Description
Lower-Upper Diagonal LU Uses symmetric successive over-relaxation (SSOR) to solve regular-

sparse, block 5x5 lower & upper triangular system of equations that are
the product of unfactored implicit finite-difference discretization of
three-dimensional Navier-Stokes equations

Scalar Pentadiagonal SP Solves multiple independent systems of nondiagonally-dominant,
scalar pentadiagonal equations resulting from approximately-factored
implicit finite-difference discretization of Navier-Stokes equations

Block Tridiagonal BT Solves multiple independent systems of nondiagonally-dominant, block
5x5 tridiagonal equations resulting from approximately-factored
implicit finite-difference discretization of Navier-Stokes equations

[75:16][10:5]

By 1995, some shortcomings of NPB 1 benchmarks led to the development of the

NPB 2 benchmarks. These shortcomings included [10:3]:

a) The implementations tended to be tuned to the particular system by vendors. While

these implementations demonstrated what the specific system is capable of doing, they

were not representative of the performance which a typical computational

scientist/engineer could expect for a specific application.

b) The vendor-implemented software generally was also proprietary, preventing

researchers from using the vendors' techniques to obtain better performance.

18

c) The system-specific implementations were not very portable due to compiler/assembly

language tuning.

d) The largest problem size specified in NPB 1 was no longer representative of the

largest real-world problems.

Table 2-5. NPB Problem Sizes.

Benchmark
Class S
"sample"

Class W
"workstation"

Class A Class B Class C

EP 224 225 228 230 232

MG 323 643 2563 2563 5123

CG 1,400 7,000 14,000 75,000 150,000
FT 643 1282x32 2562xl28 512x2562 5123

IS 216 220 223 225 227

LU 123 333 643 1023 1623

SP 123 363 643 1023 1623

BT 123 243 643 1023 1623

[10:12][61]

To overcome the first three of these problems, NPB 2 provided Fortran 77 source

code using MPI for interprocess communication. Instead of pencil-and-paper

specifications, this code was written to be very portable and to be representative of what a

typical computational scientist might produce. The last shortfall was corrected by

specifying another, larger problem class to supplement the originals [10:5-6,12]. Further,

in 1997, a "workstation" problem class was specified for systems with less than 32 MB of

memory [99].

Because the NBP 1 results still hold significance as what a system could achieve,

NAS continues to accept NPB 1 results. For NPB 2 results, NAS defined three tiers

[10:10]:

a) Unmodified - the only changes to the source code are those necessary to make the

code execute.

19

b) Minor modifications - up to 5% of the lines of code are modified; modified source

code must be provided.

c) Greater than 5% modifications - treated as NPB 1 results, except that non-vendor

submissions are included with the NPB 2 results, and that modified source code must

be provided.

The version of the NAS Parallel Benchmarks used in this thesis effort is NPB 2.3,

downloaded from [99].

2.3.1. LU Simulated CFD Application

One of the simulated CFD applications in NPB 2 is LU, named after the format of

the system of PDEs, and not because it uses LU decomposition (it doesn't [75:5]).

Instead, the LU benchmark uses a well-known point-Gauss-Seidell relaxation scheme,

SSOR,18 to solve the three-dimensional compressible Navier-Stokes equations (Table 2-6)

[78:13][101:1] using double-precision floating point arithmetic [61].19 LU was selected

over other applications as our testbed, as described in Section 3.2, because of three major

factors:

a) it is designed specifically to have communication and computation patterns similar to

"real" CFD applications [75:2];

18 The SSOR algorithm is described in [11]. Given a system of PDEs expressed as Ax = b , where A is

the coefficient matrix, b is the vector of constants, and x is the solution vector, SSOR solves a system of
PDEs by partitioning the coefficient matrix into upper & lower triangular matrices, then iterating through
the formation of the constant vector, solving the upper triangle, solving the lower triangle, and updating
the solution by calculating the steady-state residual [11:2]. The interprocess communication for current
version of the parallel implementation is described in [101].
19 Double-precision is the highest level of precision explicitly defined by the IEEE 754-1985 Standard for
Binary Floating-Point Arithmetic, providing 15-17 base-10 digits of precision. The near-universal
adoption of IEEE 754 assures that LU will provide identical results regardless of the platform on which it
is executed [27:68-70].

20

b) it provides self-verification to establish that the solution is correct [10:7]; and

c) it is a well-known and easily-accessible piece of software, which makes it easier for

others to reproduce our results or to compare their own results with ours.

Table 2-6. Navier-Stokes Equations.

|f¥v(^J = :0 (2-1)

P
3tL 3Ui
 + Uj
\d 3xi)

dp 3
= -—+Ä +

Aj ! ax, M [ox, 3xi
7<^ 3xk)_

3
+

3Ui (2-2)

DT ,
pcv— /»V-^ + KVT- V■<?,, + <P+q'" (2-3)

[42:63]

In the unmodified LU code from NPB 2.3, the problem is partitioned among

processors by alternately halving each processor's subdomain along the x and y axes (the

z axis is not partitioned), resulting in a block checkerboard partitioning; this requires a

power-of-two number of processors [78:13-14]. Because Fortran 77 cannot allocate

memory dynamically, this partitioning must be prepared at compile-time by specifying the

problem class and the number of processors, allowing the correct amount of memory to be

allocated [10:19]. Normally, this is completely appropriate - when using an MPP, or even

a cluster with homogeneous nodes, static allocation of memory for equal-sized partitions

provides the correct amount of memory needed by each process.

20 See Section A. 1.

21

z= i=E ■
■:

(a) (b) (c) (d)

Figure 2-1. Relaxation of a tile. Active element is black; relaxed elements are gray;
unrelaxed elements are clear.

The system of equations is solved by first defining each plane along the z axis on a

particular subproblem as a tile. A tile is relaxed by starting in the corner grid point closest

to the Cartesian origin; for the sake of discussion, the coordinates of this grid point are

(kjo,k) (Figure 2-la). Next, the (io+ljo,k) point is relaxed. Then, (i0+2jo,k) is relaxed

(Figure 2-lb). And so on, until the end of the column, (imaxJo,k), is reached. This is

repeated for the j0+1 column (Figure 2-lc), the j0+2 column, and each succeeding column

until the last column of the tile,ymax is relaxed (Figure 2-ld) [101:5]. As a typical Gauss-

Seidel relaxation process, the relaxation here uses first-order accuracy,21 in which the

value for (ij,k) is found by making use of the six nearest neighbors, (i±lj,k), (ij±l,k), and

(ij,k±l). Relaxation of (ij,k) is only permitted after (i-lj,k), (ij-l,k), and (ij,k-l) have

been relaxed, while the values from the previous relaxation of (i+lj,k), (ij+l,k), and

(ij,fc+l) are used [101:2].

Relaxation of the tiles begins with the tile closest to the origin, which we shall call

(IoJo,ko) (Figure 2-2b). When tile (I,J,k) has been fully relaxed, the values22 of its border

21 See Section A.2 for discussion on solving continuous partial differential equations using discrete
techniques.
22 Density, energy, and momentum in the x, y, & z directions.

22

23 cells are communicated to the processors with tiles (I±l,J,k) and (I,J±l,k). That

complete, tiles (I+l,J,k), (I,J+l,k), and (/,/,fc+l) are relaxed (Figure 2-2c). This process

continues until all tiles have been relaxed (Figure 2-2/) [101:5]. This is one iteration; LU

is known to converge to a solution in 250 iterations [75:5].

(b) (c)

a

(d)

;-■.'■ -~ ~

(g)

CD

(h) (i)

<g7; 111 •ar?-' i •=•>£ .«fc-T <: /yZ' _'?*/, -^z

r- v -V ■'. "> *■■■■■-->: ■ - _ _ _,

(k) (I)

Figure 2-2. "Wavefront" of tile relaxation. Active tiles are black; relaxed tiles are
gray; unrelaxed tiles are clear.

2.4. Load Balancing
Load imbalance is one of the major sources of overhead in a parallel system.

Generally, this is because the nature of the application makes it extremely difficult, if not

impossible, to predict the size of the subtasks a priori. Compounding this problem, the

processors often must synchronize during execution; if all processors are not ready to

synchronize at the same time, then those which are ready earlier must sit idle [48:135].

23 Tiles (I,J,k±i) are on the same processor as (I,J,k).

23

Load balancing is the problem of minimizing the total idle processor time, and in

so doing, minimizing the execution time of the complete parallel application. For a data-

decomposed regular problem, such as CFD, load balancing typically is the near-trivial

process of statically dividing the problem domain into equally-sized subdomains. This can

even be done at compile-time, as the unmodified LU does [10:19]. For a task-

decomposed problem or an irregular problem, dynamic load balancing must be used and is

one of the most important modules in the application [22], as described in Section 2.4.2.

2.4.1. Load Balancing - Concept
Before going into further detail about load balancing, let us consider the concept

and why it's important. Consider the contrived math problem:

Alone, Airman Jones can load a certain quantity of cargo onto an aircraft in twenty minutes.

Airman Smith can load the same cargo in twelve minutes. Airman Banks can load the cargo

in thirty minutes. How long would it take them to load the cargo together?

This is essentially a parallel application - each of the airmen (processors) can work mostly

independently of the others, with some time spent coordinating their actions. Ignoring the

granularity of the problem of loading cargo, this is a straight-forward problem that a

middle-schooler should be able to solve. If the airmen (processors) had the capability to

shift work between them as needed, the cargo can be loaded in six minutes.

But if they cannot adjust their work on the fly, or if it is too expensive (in terms of

overhead), then they have to attempt to balance their workload statically. If their

supervisor assumed they each are equally skilled cargo loaders, then they would each be

assigned a third of the cargo. And if they are equally skilled loaders, this would be a good

24
(/20min+ X2min + /30min) — (/60min) — 6mhl

24

decision, particularly because it is very inexpensive decision, computationally-speaking.

However, since they aren't equally skilled loaders, the job would be finished in ten

minutes, the amount of time it would take Banks to load a third of the cargo. Meanwhile,

Jones has been relaxing for three minutes, twenty seconds, and Smith's been sitting around

idle for six minutes. If their supervisor knew a priori the performance of each airman,

then he could assign each an appropriate portion of the cargo and shave four minutes off

the job.

2.4.2. Dynamic Load Balancing
In the above analogy, when the airmen are shifting their workloads without having

to be told by their supervisor what each was responsible for, they are using dynamic load

balancing. With dynamic load balancing, work is migrated from one processor to another

to prevent processors from sitting idle while others are overworked. This can be achieved

either by receiver-initiated techniques, in which idle processors request more work

(Airman Smith finishes his portion of the cargo and offers to help Jones and Banks), or by

sender-initiated techniques, in which processors with a load above some threshold seek

processors with lesser loads to accept some of its load (Airman Banks asks Smith and

Jones for help) [48:311,340].

The schemes to determine the donors and recipients, as well as the quantity of

work to be migrated, are full areas of research in their own right and are beyond the scope

of this thesis. The interested reader will find some are discussed in

[48:313-315,317-321,340-341][28].

25

When the interconnection network (ICN) is a commodity network, dynamic load

balancing becomes even more challenging due to the increased communication overhead

involved. Kumar, et.al, [48:320-321] mathematically treat this problem for a depth-first-

search application, while Dubrovsky, et.al, [28] at the Israel Institute of Technology treat

it experimentally for four different applications.25 Kumar, et.al, treat only "simple"

techniques like round-robin and random-polling, and do not contrast them with more

"complex" techniques. On the other hand, Dubrovsky, et.al, contrast round-robin with

other strategies that try to find optimal task allocations and finds that the communication

overhead of the "intelligent" strategies produce a greater overall runtime than the

suboptimal allocations provided by round-robin; they found that the communication

overhead of the "intelligent" techniques was too great for a commodity network, and so

the "simple" strategies yielded better performance.

2.4.3. Asymmetric Static Load Balancing
In the cargo-loading analogy, when the supervisor assigned each airman

(processor) a specific portion of the task, the supervisor is using static load balancing.

While suitable for regular applications when each worker has equal capabilities, it should

be clear from the analogy that if the assumption of equal capabilities is a erroneous, then

the job requires more time to complete than is required. When the supervisor assigns each

airman (processor) a portion of the task according to his abilities, he was using

asymmetric load balancing.

25 Matrix multiplication, all-pairs shortest path using Dijkstra's algorithm, solving a set of partial
differential equations, and the Traveling Salesman Problem.

26

While static and dynamic load balancing for homogenous parallel computing

platforms has been well studied for more than a decade, load balancing for heterogeneous

parallel systems is a relatively new subject of investigation with less treatment [22]. On a

heterogeneous platform, the goal is the same: to minimize idle processor time and, by

extension, to lower the wall-clock time. This is done by distributing the work such that no

processor is waiting for the completion of another [82]. The critical problem is that the

load balancing techniques developed for homogenous systems are based on fixed

parameters, tuned for the particular system. In a heterogeneous system, these parameters

are not always known a priori [22].

Addressing this problem, researchers at the University of Paderborn [22] describe

a dynamic load balancing technique that uses observed computational & communication

performance to predict the time a task would complete on a given node and the time

needed to query a node. Based on this technique, the authors developed new initiation,

information exchange, and load exchange strategies that are suitable for a heterogeneous

system [22].

Whereas the dynamic load balancing technique in [22] adjusts the load on nodes

based on runtime performance, researchers at Brigham Young University [82] describe a

static load balancing method that does not assign tasks until the abilities of the target

nodes are known. This challenge is compounded by a variable system configuration -

compute nodes are workstations "donated" to the system by logging onto a web page.

The solution selected is to execute the HINT benchmark [39] once on each node to

27

measure their capabilities and then to allocate the appropriate subtask. Each nodes'

HINT results are stored for future use [82].

Finally, researchers at the Universidade de Coimbra in Portugal [81] ignored the

problem. Like [82], compute nodes are donated workstations achieved by logging onto a

web page. Unlike [82], the internet itself was the ICN, and donated workstations could be

anywhere in the world. They recognized that dynamic load balancing was clearly out of

the question due to the communication limitations. They also recognized that with such a

dynamic system configuration, it is impractical to insist on knowing the capabilities of the

donated workstations. Instead, their master process decomposes the problem into small

and independent tasks (not necessarily the same size), which are farmed out to the worker

processes on the workstations. When a worker process finishes its computation, it sends

the results back to the master process and waits for its next simple task. Load balancing is

achieved by reducing the problem to the finest granularity possible and never expecting a

worker process to execute more than one simple task at a time [81]. The authors of [81]

do not address the performance impact of this fine-grained task decomposition, as the

ability to call upon the computing power of thousands of workstations should be viewed

as an "enabling technology" rather than as a way to obtain performance speedup.

This survey, of course, is not the complete sum of all research in asymmetric load

balancing, but it is representative, and it should convey to the readership the present level

of research in this young field.

28

2.4.4. Load Balancing LU
Now consider Figure 2-3 and Figure 2-4, generated using the upshot profiling

tool that is part of the MPICH distribution [9]. Instrumentation was added to the

ssor. f file in the LU application to indicate when each process was computing an

upper-triangle solution, a lower-triangle solution, or a steady-state residual. What we are

observing are the rates at which two processors are executing portions of the SSOR code.

Figure 2-3 shows the time specific processors are spending in each portion of the

SSOR engine of the LU application before asymmetric load balancing is implemented.

Process 0 (PO) and Process 1 (PI) are identical processes, except for the data for which

each is responsible. PO is executing on a 450 MHz Pentium n, and PI is executing on a

200 MHz Pentium; however, since traditional (symmetric) static load balancing is used,

each has been assigned exactly half of the data set to solve.

IIIWI.T ln:iiv|b'

I BiB^I||^j|üjs|i^iEi^BaiS
Upper /Wangle ; SS Residuals mm

I
H

<m. is
sUs^Kill m

SPIII

RJ

"ffffiiisiils

Figure 2-3. Unbalanced LU.A for 450 MHz Pentium II & 200 MHz Pentium.

Process 0 completes the Residual calculation faster than Process 1 does, and then

it enters the portion of the code that deals with the lower triangle of the system of PDEs.

P0 is immediately blocked for communication with PI and must wait for PI to reach the

appropriate portion of the code. After the processors exchange information, they perform

the lower triangle calculation; again, P0 completes the calculation faster than PI and must

29

wait for another information exchange before proceeding into the upper triangle region.

This is why the faster node spends more time in the lower triangle segment than the slower

one does - PO finishes all calculations earlier but must periodically wait for PI to catch up.

The situation is similar for the upper triangle region.

■mBimmmmsmm
Upper Triangle SS:MSWH1*>'

r

fe"Wf£>i^ W':;fr*"*:»:

m
T\QMaiX:mmM~*iMm ,118.2

H m

Figure 2-4. Load balanced LU.A for 450 MHz Pentium II & 200 MHz Pentium.

In Figure 2-4, a load balancing algorithm26 is used to apportion the subdomains

according to the processors' abilities. Whereas each process had previously been

responsible for half of the domain, now PO is assigned just over three-fourths of the

problem, and PI just less than a fourth. Clearly, the processes are now spending about the

same amount of time in each section of the application and little time waiting for

communication. As a result, when load balancing is used for this case, the application

requires 48% less time to execute than the unbalanced version.

Compete results are presented in Chapter iv.

2.5. Summary

In this chapter, we reviewed the economic and technical aspects of the computer

industry that led to the use of COTS hardware and software for high performance

26 The load balancing algorithm developed in Section 3.3 using the Mflops weighting, described in
Section 3.3.2.2.

30

computing. The current configuration of the ABC was described; details on its

construction are in Section 3.1. Next, the application used to test the load balancing

techniques developed in this thesis effort was discussed, followed by an explanation of

load balancing and a review of previous efforts in asymmetric load balancing.

Now that we've seen a specific example of how load balancing can improve the

LU application on a heterogeneous platform, we discuss how to implement and test load

balancing in Chapter in.

31

///. Methodology

Building upon the background provided in Chapter n and Appendix A, we now

consider the high- & low-level design and implementation decisions made in the course of

this endeavor. After explaining why the LU application was selected as the testbed, we

discuss the changes to the LU application, then the software created to measure the

nodes' performance, and finally the design of the experiments.

3.1. Construction of the AFIT Bimodal Cluster
The AFIT Bimodal Cluster was started in the spring of 1998. There was no formal

methodology to its construction, but rather a series of decisions that were addressed as

they arose. One of the first considerations was whether the operating system should be

Windows NT or Linux. Linux has the advantage that its license is free, and that the

Beowulf project and related projects [52] had already broken the ground for parallel and

distributed computing with Linux. Windows NT has the advantage that the nodes can be

ordered with NT pre-installed, and that two members of our team are Microsoft Certified

System Engineers (MCSE). We realized, though, that this need not be an either-or

consideration, and both operating systems were included. The author undertook the

responsibility of administering the Linux system, learning the job of system administration

along the way.

Another early decision was that the most current hardware would be added to the

ABC as money became available, and that personal computers already at AFIT that were

offered to be part of the ABC would be considered on a case-by-case basis. The

32

alternative was to use only homogeneous nodes, but this was ruled out for three reasons,

two of which deal with future expansion. First, eventually, the processors used in the

system would not be available for further expansion. Second, the ABC's performance

would not be able to grow with technology. The third reason is that older computers

donated to the project are additions to the ABC's capabilities without impacting our

budget.

The initial Linux installation was not an advanced attempt at installation, because

the author was still learning system administration. Four 333 MHz Pentium IIs were used,

interconnected with an eight-port Fast Ethernet hub. Each had a full Linux installation,

and each was essentially an independent computer; even NFS was not implemented, which

meant users had separate home directories on each machine. Early testing with some

simple kernels27 revealed that the hub produced an unacceptable number of network

collisions for communications-intensive applications, and a 24-port Fast Ethernet switch

was ordered.

Another aspect of the system revealed during the early testing is an error in the

tcp_ack () function in the Linux kernel which delays the transmission of partial packets,

decreasing the network throughput (Figure 3-1). Whether this impacts performance, and

by how much, depends on the application's communication patterns, particularly the size

of the messages and how often they are transmitted. We have since learned of a fix [76],

but chose not to implement the fix for temporal reasons.

27 Matrix-vector multiplication, matrix-matrix multiplication, ID FFT, and various sorting algorithms.

33

30000 40000

Message Size (byJes)

50000

I ABC Linux 2.0.33 (MPICH 1.1.0) ~*~ABC NT 40SP4 fPaTENT 4.091 "»-ABCNT 4.0SP4 (MPI-Pro 1.2.3) 1

Figure 3-1. Delayed transmission of partial TCP packets under Linux.

When six 400 MHz Pentium IIs were added to the system, we took the

opportunity to perform a full reinstallation of Linux, making use of lessons learned over

the previous months. NFS was implemented to provide transparency to the users. We

also sought to take advantage of the aggregate disk space within the cluster, should users

need that much disk space, and NFS is used for this as well. We also attempted to

implement MS to share the password files across the cluster but were unable to get it to

work correctly, and we decided to spend our time on issues more directly related to our

research.

We had to address the issue of terminals for the system. When there were only

four nodes in the cluster, each node had its own monitor, keyboard, and mouse. With ten

nodes, physical space prevented this. Many other PoPC sites do not provide direct access

34

to each node [66], but students using the Windows NT installation did require occasional

access to each node. We solved this problem by ordering keyboard-video-mouse switches

to allow the nodes to share terminals.

Security of the system is a serious issue. We address it by not letting it be an issue

for Linux. The author, recognizing his limitations as a system administrator, has not

configured the Linux installation to accept any remote access from outside the cluster.

The cluster can be accessed remotely through the NT installation, but not through the

Linux installation.

Tool selection is treated on an as-needed basis. For the early testing of the ABC,

the gcc compiler was sufficient. However, the team determined that we also need a C++

compiler and a Fortran compiler. So, we downloaded the egcs suite [19], which includes

C, C++, and Fortran 77 compilers, and we also ordered a commercial Fortran 90 license.28

MPICH [9] was selected as the communications library because it was the one with which

we already had experience.

Since these decisions were made, the cluster has grown further to include the

24-port switch, a 450 MHz Pentium II and a 200 MHz Pentium.29

3.2. Application Selection
We choose the computational fluid dynamics problem domain for this research

because it is a well-understood deterministic problem, and because it would directly

support other research at AFIT. With the problem domain selected, a specific application

must be chosen on which to test the load balancing techniques. The three options

28 The Fortran 90 license arrived too late to be used for this thesis.
29 See Figure 1-1 and Table 2-2.

35

considered are: to write a simple CFD application, to use the NAS Parallel Benchmarks,

and to use a "real-world" application.

Using a real-world CFD application would provide extra validity to our claim that

asymmetric load balancing is suitable for real-world applications. We obtained such an

application from the AFRL, but there are two reasons we do not use it. The first is that

since it is not publicly available, other researchers would not be able to use the same

application to reproduce our results. The second, more significant, reason is that the

application is written using Fortran 90, and our Fortran 90 license is unavailable.

Writing a simple CFD application would not be hampered by either of the

problems with using the AFRL code, but this option isn't the best option, either. First, it

would require time to be spent developing and testing the CFD code instead of developing

and testing the load balancing code. Second, the correctness of the algorithm would have

to be assumed since the author, not being an expert on fluid dynamics, cannot verify the

solutions obtained.

The NAS Parallel Benchmarks, though address all the above concerns. It is a

publicly-available benchmark suite, most of which is written in Fortran 77. It also includes

self-verification, which assures us that not only is the algorithm correct, but also that any

modifications we make do not impact the correctness of the solution. It also reports both

the time and the Mflops rate, which facilitates comparing the load balanced performance

to the original code's performance [10:7].

Selection of the particular simulated CFD application from NPB is based on our

desire to obtain as many points of comparison as possible. The SP and BT applications

require a square number of processors [10:9]; given the processors available, this limits us

36

to three quantities: one, four, and nine processors. LU, on the other hand, requires a

power-of-two number of processors [10:8], permitting comparisons with four quantities:

one, two, four, and eight processors. Further, at the time this decision was made, we still

were using the 8-port hub, which would have prevented testing the nine-processor case

for SP or BT. These factors made LU the preferable application.

3.3. LU Modifications

The full code of the LU application is not reproduced in this thesis due to its size

and because it is available for download from [99]. Appendix B, though, contains the

output dif f produces when contrasting the original and the modified code so other

researchers can make use of these techniques and to facilitate the reproducibility of our

results.

The modification paths are shown in Figure 3-2. Modification 031 was a minor

modification to get the code to execute on the ABC, due to problems with MPICH 1.1.0

and Fortran, and does not represent a redesign of LU. The remaining changes are

described in the following sections.

30

30 There are 6265 lines of code in the original source files used by LU [61].
31 See Section B.l.

37

striped added
partitioning instrumentation

implemented removed
load balancing instrumentatio n

Baseline
(original

source code)
>►

Modification
0

w Modification
2.0

checkerboard
partitioniong

-► Modification
1

Modification
2.1

Modification
3.1

w Modification
4.1

rowwise
striped

partitioning
f

-► Modification
1a

Modification
2.2 >►

Modification
3.2 -► Modification

4.2

columnwise
striped

partitioning

▼ f f
Modification

1.3
Modification

3.3
^ Modification

4.3

removed
power-of-two
requirement

&<■•*

Figure 3-2. Modification progression of LU, from original to asymmetrically load
balanced implementation.

3.3.1. Design of Domain Decomposition

3.3.1.1. Original Design
We begin by examining the relevant portions of the original LU code. We wish to

study the domain decomposition independent of the implementation language, to avoid

confusion caused by programming language constructs, such as goto's. Z [44] lends

itself well to this analysis by allowing us to clearly express the mathematical nature of the

algorithm in set-and-logic notation. Programming-language-neutral models can also be

created using Universal Modeling Language (UML) [74] and UNITY [15]. We choose

not to use UML because the its object-oriented nature is not well-suited to the application

we are describing. We opt for Z instead of UNITY for two reasons. UNITY does not

specify on which processor an assignment takes place [15:9], yet to express the data

partitioning, we must be able to express at least the proportion of data to be allocated to

each processor. Also, Z has become one of the more popular specification languages

[32:448], which increases the likelihood it will be familiar to the readership.

38

We first convert LU's original partitioning scheme32 into Z syntax (Figure 3-3).

The Z design begins with some simple constraints, namely that each process has a unique

identification, the number of processes must be a power-of-two, each process can have at

most one neighboring process in each of the cardinal directions, and each process can be a

neighbor to no more than one process in each cardinal direction.

 Process
id: JV

north,south, west,east: p Process

nx,ny,nz: Z+

ipt,jpt,lcpt:ffl

row,col:%+ (a)

isizl,isiz1,isiz3 '• JV

#north < 1

#south < 1

#west < 1

#east < 1

Subdomain
LU : p Process

nx0,ny0,nz0 : Z*
xdim, ydim : JV

/?.W ^ g.W) \fp,q e LU,pjt q»(

VpeLU»(p.id<#LU)

\/p,q,r G LU,p & q*\(#r > 0) A (r = p.north) => (r ^ q.north)/

Vp,q,r G LU,p * q»\{#r > 0) A (r = p.south) => [r ^ q.south))

Vp,q,r e LU ,p ^ q • \{#r > 0) A{r = p. west) => (r * q.west))

Vp,q,re LU,p* q»{i,#r> 0) A (r = p.east) => (r * q.east)/

Vp e Li7 »(/?.row = mod(p.id,xdim) + 1]

V/7 e Lf/ »(p.col = p.id/
/x.dim ">

V/7 e L£/ »^(4 < p.nx < p.ijiz,) A(4 < p.ny < p.isiz2) A(4 < p.nz < /J.W(Z3))

(b)

Figure 3-3. Z design for original LU partitioning/load balancing.

32 Mostly found in the file subdomain. f [61].

39

Unbalanced Subdomain
Subdomain

3new(#LU =2")
I lQg;(#Z.U) |

xdim=2i 2

#LU
ydim ■■

xdim

[p.row < mod[nx0,xdimj) ■

Vp e LU •[(nx , . .
p.nx= ° +1 \/\[p.ipt - [p.row-lj- p.nxjj

Al* I f'l'

[p.col < mod^o, ydim)) => \

{p.jpt = {p.col-\)p.ny)j

[p.row > mod[nx0,xdimjj =>

VpeLV{(nyQ \
p.ny = ——+\

y ydim J

p.nx = —r~ \Ayp.ipt = (p.row-1)- p.nx + mod[nx0,xdim)j i

(p.col > mod(ny0,ydim)j ■■

A\p.jpt = (p.col-l)- p.ny + mod[ny0,ydimjjj ny0 p.ny r-
ydimy

V/J E LU »\p.nz = nz0)

Figure 3-3 continued.

Beyond these constraints, the Z design is a series of predicates that define the

block checkerboard row and column each process is responsible for, as well as the

particular coordinates for the process' tiles

Every predicate in which there is only one instance of a process can be satisfied on

each processor independent of the other processors. Nine of the twenty-one constraints

are such predicates, offering parallelism in this symmetric load balancing scheme.

3.3.1.2. Design Changes
Having examined the baseline design, we consider the design considerations to

implement asymmetric load balancing. The first consideration is the partitioning scheme.

Section A. 1.3.3 describes the alternatives.

40

Bearing in mind that this is an initial effort at asymmetrically load balancing LU,

drastic changes such as irregularly-shaped tiles can be immediately ruled out. The next

two options described, in which the row widths are varied within each column rather than

globally, can also be ruled out; again, they require modifications to underlying assumptions

in the CFD engine that, while suitable for future experimentation, are inappropriate for this

early exploration into asymmetric load balancing.

This leaves two options left: block striping with variable column widths, and block

checkerboard partitioning with the column and row widths balanced globally. Block

striping is the simpler approach to implement, but that is not a sufficient reason to rule out

the block checkerboard approach. The small number of processors available for this

endeavor means that block checkerboard partitioning's advantage of using of all

processors available is not a concern here.33

There are, however, two performance-related reasons to use block striping and not

block checkerboard. First, based on the analysis in Section A. 1.3.2, we expect that for

smaller numbers of processors, the communication overhead involved in block

checkerboard partitions is greater than that for block striped partitioning. Second, looking

forward to implementation issues, the memory allocation requirements34 drastically reduce

the data locality for block checkerboard partitioning, which in turn increase cache misses

and reduce the performance realized. Had this assessment proven erroneous, then block

checkerboard partitioning could still have been implemented. As reflected in the next

chapter, though, this is a good design decision.

33 See Section A. 1.3.1
34 See Section 3.3.2.

41

The next issue considered is whether the block striped partitioning should be

rowwise or columnwise. At an abstract level, such a decision could be arbitrary. For the

LU application (assuming all dimensions are of equal magnitude), the communication

requirements are the same, regardless of whether rowwise or columnwise block stripping

is used. Likewise, the processor utilization would be no different, assuming data locality

can be assured. And therein lies the key to this decision. Due to an implementation

issue,35 data locality would be severely hampered if rowwise block striping were used, and

the performance penalty would be even greater than if block checkerboard partitioning

were used. For this reason, columnwise block striped partitioning is the method of choice.

Figure 3-4 and Figure 3-5 provide the Z specification for the final partitioning

scheme, implemented in modification 4.3. A "balanced process" is a process with the

extra "weight" attribute; the nt\ and nt2 attributes are placeholders used to simplify

expression of the specification without creating contradictions when specifying subdomain

sizes.

Whereas in the baseline partitioning specification, nearly half of the constraints are

parallelizable, not even a fifth of the constraints in the new partitioning scheme are. The

implication is that there is not as much parallelism in the new partitioning scheme as there

was in the original; many of the statements require global knowledge that was implicit in

the original but now must be determined at runtime. This is not of great concern, as the

time spent partitioning the domain is negligible when compared to the time involved in

solving the system of PDEs.

35 We use Fortran 77 to implement this software, which does not provide for dynamic memory allocation,
which means more memory must be allocated for each partition than is needed. Since Fortran 77 stores
multidimensional arrays in column-major order, rowwise striping loses data locality. See Section 3.3.2

42

Balanced Process
Process

ntl,nt2 : JV

weight: ffl
weight > 0.0

Balanced Subdomain
Subdomain
S|,S3 : pprocess
t,u : process

#LU>1

Vp e LU • Is_Balanced_Process(p)

xdim = 1

ydim=#LU

Vp e LU • (p. weight = WeighNode(p)

Vp e LC7 • (p.nx = nx0)

Vp e L£/ • (p.nf, = n>>0 • round p. weighty

\peLU

^p.nti >ny0
\peLU

\peLU

2_,q. weight
qeLU)

Vpe LU • (p.nz = nz0)

Xp.n'i = ny0 =* (Vp e LU •{p.nt2 = p.nf,))

S, = jp (p e LU)A[\/q e LU • (p.weight < q.weight))} A

[(E5,]A CorrectDown(f ,0)

\S> -\P\ {pe LU)^{\/qe LU »(p.weight > q.weight))j\,

[f E5,]A CorrectUp(/,0)

[\/peLU *{p.nt2 >4))=>(\/qe LU »{q.ny = q.nt2))

, , u S3 = \p \(pe LU)A(\/qe LU »(p.weight < q.weight))} /
[3peLU»{p.nt2<4))=> L JJ

MM e 53J A Debalance(M,0,4-M.nf2)

AssignPosition(0, Li/)

(a)

(b)

Figure 3-4. Z design for final LU partitioning/load balancing.

A tile's width is determined by multiplying the size of the global domain's y

dimension, ny0, by the processor's fraction of the total computing power. Because

fractional elements are nonsensical, this product is rounded to the nearest natural number.

If, however, there are rounding errors, then one or more subdomains must have their size

corrected. If the sum of the subdomain y dimensions is greater than the global domain's y

43

dimension, then the correction is achieved by reducing the load of the weaker processors.

Conversely, the most powerful processors are given a greater load if the rounding errors

resulted in too few elements.

Next, if any tile widths are less than four elements, then some of the load balancing

is undone. The specification for a minimum width is a legacy requirement from the

original software [61], presumably to keep the communication overhead from dominating

the application, and it was retained for precisely that same reason. Whereas the original

LU had no way to prevent a tile from being fewer than four elements wide, the load

balanced version has the recourse of correcting a violation of this constraint that had been

caused by the load balancing process itself.

Finally, after all corrections have been made and ny is known for each process, the

precise boundaries of each tile can be established.

 CorrectDown
SLU

aT,a\: process

b ?:p process

S2 :pprocess

c : process

S2={p\[pe {LU \({a}\Jb))]*[Vq e {LU \({a}Ub))* (p. weight < q. weight)^ (a)

c e S2

2j p.ntl = ny0-#b => (a \.nt2 = a ?■««,)
peLU)

X P-ntl > ny0-#b => (a \.nt2 = a ?.ntl - l)
peLV)

CorrectDown(c,{a}Ub)

Figure 3-5. Supporting functions for Figure 3-4.

44

CorrectUp
SLU

a !,a\\ process

b ?:p process

S2 :pprocess

c : process

S2 = [p | [p s (LU \({a}{Jb))]*[Vq s (LU \({a}\Jb))* (p. weight > q.weight)]] (b)

c e S2

f
£ p.ntl = ny0+#b

{new
\a\.nt, =al.nt,

X P-n'i <ny0+#b => (a\.nt2 = a1.ntl - l)

CorrectUp(c,{a}l)b)

Debalance
SLU

a1,a\: process

b ? : p process

diff ? : X
bl: p processS2 : #7 process

c : process

left : JV

S2 ={p\[pz(LU\({a}\Jb))]A[Vq <= (LU \({a}\J b))'(p.nt2 < q.nt2)]}

c e S
left = c.nt2 -diff ?

[{left >4)=> (a.ny = a.nt2 +diff)f, (c.ny = left)]

[(left < 4)=> ((a.ny = a.nt2 + diff) A Debalance(c,{a}UM - left))]j

(#(LU \b)=l)=i (a.ny = left)

(C)

AssignPosition
tptl-.JV

St1,Stl : p process

d : process

S,T:pi process

?»(p.ny < S5 = {P \[peSil]*[VqeSi 1 •">)]}
d € S5

d.jpt = tptl

(#S5 >) => AssignPosition(d jpt + d. ny s4?\{rf})

(d)

Figure 3-5 continued.

45

3.3.2. Low-Level Design & Implementation

3.3.2.1. Low-Level Design of Partitioning and Load Balancing

The implementation language selected, we turn to implementing block striped

partitioning. As detailed in Section A. 1.2, implementing the partition poorly can have a

serious performance penalty if data locality is lost. Fortran stores multidimensional arrays

in column-major order [1:10]. This means that if we allocate the full domain size but the

columns are not the length of the full domain, then the process' memory access patterns

are brief periods of unit stride followed by leaps across the memory space.

To put numbers to this, if the full domain has 64 x 64 x 64 elements, but a

process' row is only four elements wide, and each word in the arrays is eight bytes, then

the process strides through 32 bytes and then skip over 480 bytes before it reaches the

next element of the array that it can use. At best, this causes a reduction in cache hits, and

the application suffers a performance penalty. Consider, though, that the A-class problem

size for LU requires 40 MB36 just for the problem domain, and that ABC 12 has only

32 MB of main memory. As the process executing on ABC12 relaxes a tile,37 it cannot

avoid thrashing to swap space.

On the other hand, if the columns are as long as the full domain, then unit stride

memory access is possible, thereby making greater use of data locality. And, if ABC 12 is

responsible for half (or less) of the problem domain, then the columns for which it is not

responsible remain in swap space, never to be touched. Clearly, since Fortran 77 is the

36

f3 64 elements 20DPFP words Sbytes ,,,,,,, „
x x = 5 x 2ix6+2+3 bytes = 5 x 2™ bytes = 40MB

element DPFP word
[61]
37 See Section 2.3.1.

46

implementation language for this investigation, then columnwise block striped partitioning

is a must. However, to quantify the performance loss incurred due to poor partitioning,

both columnwise and rowwise block striped partitioning were implemented.

Referring again to Figure 3-2, we examine the incremental changes made to LU in

the course of this investigation. Each modification is a minimal change. This is to

facilitate the isolation of errors by requiring testing of only small portions at a time.

The change from modification 0 to modification 1 is a change in the partitioning

scheme from block checkerboard to block striped. Specifically, modification 1 introduces

rowwise block striping. Even if we did not wish to quantify the penalty associated with

poor partitioning, the progression from LU's original block checkerboard partitioning to

rowwise block striping is a safe first-step. The original LU's partitioning was such that

there are no fewer rows than columns [61]. Changing to rowwise block striping is as

straight-forward as changing the equations that define the dimensionality of the tiles.

Modification la38 is also an implementation of block striped partitioning, this time

columnwise. Besides changing the equations that define the tiles' dimensions, other

portions of code also needed to be modified to remove the assumption that the rows are

no wider than the columns. LU's self-verification is useful in establishing that all

necessary changes have been made, and that the changes have not affected the correctness

of the algorithm.

The 2.x modifications add instrumentation to the code, providing us with insight to

the partitioning and how much time each process spends in certain portions of the code.

38 See Section B.2.

47

The 3.x modifications implement the load balancing algorithms, and the 4.x modifications

deinstrument the code.

Examination of modification 4.239 shows the implementation of the design

specified in Figure 3-4 and Figure 3-5. Each process weighs its node in parallel with the

others, and then an all-to-all exchange is made to give each process global knowledge

about the system's capabilities. Once this piece of knowledge is available to each process,

two implementation options are available: we could either make maximal use of the

available parallelism, or each process could make the partitioning calculations for each

process and use only what it needs. Because each process eventually needs to know the

precise location and size of the partition on its lower-numbered neighbor (a requirement

that recurses down to Process 1), then if each process calculates only its own partitioning

we need to engage in more interprocess communication. Instead, we make note that these

calculations are inexpensive and that our ICN is not a high performance network. For

these reasons, we require each process to conduct the full calculation of the partition

assignments.

Most of the calculation can be mapped straight from the Z specification, using

iterative loops instead of recursive functions. One particular requirement, though, requires

some cleverness. We must be able to establish an ordering of the processes by their

weight. Obviously, a sort is required. The problem, though, is that we must also preserve

the original ordering of the processes as well. Simply copying the process' information

and then sorting the copies is insufficient, as we want changes in the process' attributes to

be reflected in the original. Some indirection is required, and the solution should be

48

familiar to any C programmer: pointers. Dereferencing the pointers allows us to sort the

pointers based on the weights of the processes to which they point.

The last modifications (1.3, 3.3, and 4.340) remove the requirement that the

number of processors be a power-of-two. The original requirement was necessary to

enable block-checkerboard partitioning, but with block striped partitioning, this is no

longer required. After this last change, any number of processors up to the maximum

permitted can be utilized.

3.3.2.2. Language Selection
Once the low-level design has been established, a critical implementation decision

is the implementation language itself. The LU application was written in Fortran 77 with a

few common extensions. The NPB 2 programmers had considered Fortran 90 but ruled it

out due to performance concerns associated with Fortran 90 [10:6][27:85-85,285-286].

Unfortunately, Fortran 77 does not support dynamic memory allocation, unlike

Fortran 90. This means that should Fortran 77 remain the implementation language,

sufficient memory must be provided to each process to accommodate the largest

subdomain it might be assigned [27:282].

The alternative to allocating enough memory on each processor for the entire

problem is to use a different implementation language. Obviously, the prime criteria for an

alternate implementation language are that it support dynamic memory allocation and that

it be able to either link with the MPI libraries [9] or link with a "wrapper" routine written

in a language that can link with the MPI libraries. Rewriting the program in C (or C++)

would be an inefficient use of development time that could be used better elsewhere.

39 See Section B.3.

49

Other non-Fortran languages have the same disadvantage, and possibly others. The

remaining options, then, are Fortran 77 with oversized arrays and Fortran 90. Since a

Fortran 90 license is unavailable for the experiments, Fortran 77 is the implementation

language by default.

The other complication with implementing the low-level design using Fortran 77

instead of Fortran 90 or C/C++, besides its inability to allocate memory dynamically, is the

lack of pointers, which we specify as a necessity in the previous subsection. We overcome

the problem by creating pseudo-pointers. These are not real pointers, but rather an array

that hashes to the array with process information. Instead of sorting real pointers, we sort

the elements of the hashing array based on the weights of the processes to which they

map. That done, we continue to use the hashing array to adjust the partition assignment

for the least and/or most powerful processors.

3.4. Measurement of Compute Node Performance

Any asymmetric load balancing algorithm must have some way to determine the

performance capabilities of each node. Decker, et.al, [22] use the run-time performance

of the application to adjust the load dynamically. Silva [81] gets around the issue by

decomposing the application into the finest grain possible. For our application, the

approach in [22] is not suitable because it uses dynamic load balancing, and we are using

static load balancing which, by definition, precludes knowledge about the run-time

performance. The solution [81] uses is unacceptable due to the performance penalty such

a fine-grained decomposition would have.

40 See Section B.4.

50

isizOt = isizOl

iargl = 1 ! /proc/cpuinfo converted
iarg2 = 1 ! /proc/cpuinfo converted
iarg3 = 4 ! /proc/cpuinfo converted
weight = weighnode(iargl,iarg2,iarg3) ! /proc/cpuinfo converted

call MPI_ALLGATHER(weight,1,MPI_D0UBLE_PRECISI0N,
glblw8,1,MPI_D0UBLE_PRECISI0N,
MPI_COMM_WORLD, IERROR)

ttlw8 =0.0
do 3 651 loop=0,nnodes_compiled-l

ttlw8 = ttlw8 + glblw8(loop)
3651 continue

sum = 0
do 3 652 loop=0,nnodes_compiled-l

temp = glblw8(loop)*isiz0t ! common subexpression
nt(loop) = temp/ttlw8 ! nt is int, so truncated
if (mod(temp,ttlw8)/ttlw8.ge.0.5) then

nt(loop) = nt(loop)+l ! correct rounding error
endif
sum = sum+nt(loop) ! to check the math later
pointer(loop) = loop ! initialize pointers

3652 continue

sorted = .false.
3655 if (.not.sorted) then

sorted = .true.
do 3656 loop=0,nnodes_compiled-2

if (nt(pointer(loop)).gt.nt(pointer(loop+1))) then
itemp = pointer(loop)
pointer(loop) = pointer(loop+1)
pointer(loop+1) = itemp
sorted = .false.

endif
3656 continue

go to 3655
endif
lo_end = 0 ! steal from the poor
hi_end = nnodes_compiled-l ! give to the rich

if (sum.ne.isizOt) then ! nuts
3657 if (sum.gt.isizOt) then ! ease the lowend's load

nt(pointer(lo_end)) = nt(pointer(lo_end))-1
lo_end = lo_end+l ! share the easement
sum = sum-1
go to 3 657 ! make sure we're finished

endif
3658 if (sum.It.isizOt) then ! more work for highend

nt(pointer(hi_end)) = nt(pointer(hi_end))+1
hi_end = hi_end-l ! share the extra effort
sum = sum+1
go to 3 658 ! make sure we're done

endif
endif

do 3 659 loop=0,nnodes_compiled-2
if (nt(pointer(loop)).It.4) then ! nuts

itemp = 4-nt(pointer(loop))
nt(pointer(loop)) = nt(pointer(loop))+itemp
nt(pointer(loop+1)) = nt(pointer(loop+1))-itemp

endif
3659 continue

if (nt(pointer(nnodes_compiled-l)).It.4) then ! gosh darn it
endif ! do nothing ... it'll get caught below

tpt(0) = 0
do 3 654 loop=l,nnodes_compiled-l

tpt(loop) = tpt(loop-1)+nt(loop-1)
3654 continue

ny = nt(id)
jpt = tpt(id)

Figure 3-6. Asymmetric load balancing implementation.

51

Instead, we consider the technique used by Snell, et. al, [82] who rely on a

preliminary run of HINT on each node to achieve this, with the option of storing each

nodes' result on a local file to avoid recalculation of the QUIPS rating in the future.41 The

problem with this approach is that it is computationally expensive. Even with storing the

result for future use, it neither scales well, nor is it cheaply portable. If new nodes are

introduced to the system, they cannot be used for processing until they have been

benchmarked with HINT first. Considering that the system in [82] is a network of

workstations that are dynamically donated and removed by the workstations' owners, this

introduces a great deal of overhead when a workstation is first donated. Further, if the

application is ported to a new system, then the entire system must now be rated with

HINT.

So the question, then, is can the relative capabilities of the nodes be estimated

without the expense of running HINT (or some other comprehensive benchmark) on each

node first? If so, how? And, how effective is it? To answer these questions, we must

reconsider the nature of the underlying hardware and operating system.

3.4.1. Design

3.4.1.1. Amortizing the Computational Cost of Classifying Nodes

The first observation we make is recognizing that while the system as a whole is

heterogeneous, many nodes are similar, even identical, to each other. If we could take

advantage of this knowledge, then we have already reduced the overhead of using a

benchmark such as HINT.

41 See Section 2.4.3.

52

The first approach we consider is to identify the unique types of nodes and run the

benchmark on one of each type. Then, recognizing that every node has a unique

identification, we could build a map from node id to benchmark rating. In the case of the

ABC, where there are four types of nodes, twelve nodes total,42 this would cut the

overhead of running the benchmark down to one-third of the processor time. When we

add new nodes to the system, we can add them to the map if they are identical to a node

already in the cluster. If they are not identical to a pre-existing node, then we can execute

the benchmark on them and then add them to the map, which is still no worse than the

method in [82].

While we have reduced the overhead induced by adding nodes to the system, there

are still problems which must be addressed. The most serious problem is that this

approach requires human editing of a file - building the map cannot be done by the system

unless it already knows which nodes are identical to each other, and to know which nodes

are identical to each other, either a human must provide that information, or the system

must determine that information by measuring the capabilities of each node. Which brings

back the original dilemma, our desire to avoid running an expensive benchmark for each

individual node. Related to this problem, is that this approach is unsuitable for dynamic

addition of nodes. If a node is donated for the first time without the map being prepared

first, then the system must still measure the new node's performance. Finally, we haven't

improved the ease of porting to a new system! Unless the maps are published with

documentation explaining that a node with a certain processor clocked at a certain rate has

42 See Figure 1-1 and Table 2-2.

53

a certain rating, then researchers using a different system must build their own map from

the ground-up.

With Linux, though, we can actually create a map that associates system

information with benchmark ratings. Linux, like all UNIX systems, has a directory in its

directory tree called /proc. The files in /proc do not reside on disk, but rather are

created by the OS and reside in main memory [98:22]. One of these files, cpuinf o,

contains information such as the processor's manufacturer and model. While it does not

include the rate at which the processor is clocked, it does include a performance-related

value called "BogoMIPS." BogoMIPS, meaning "bogus MIPS," is calculated when Linux

boots to calibrate certain timing loops used elsewhere [92]. It has been described as "how

many times the computer can do nothing in one second" [33:19]. What benefits us is that

when combined with the manufacturer and model information, BogoMIPS allows us to

identify each unique type of processor. This means the map can be generated by the

computer and that new nodes that are identical to existing nodes can be mapped without

human intervention. Further, a map can be placed on another system without editing and

still be useful. Finally, if a new node is added that is not mapped, then the system can use

the information known about other nodes to estimate the mapping for the new node

without executing the benchmark on that node. The primary shortfall is that

/proc /cpuinf o is not available on other operating systems, not even other versions of

UNIX.

3.4.1.2. Benchmark Selection
The next design consideration is the benchmark selection. We first want the

benchmark to accurately predict the performance our application realizes on our nodes.

54

Second to this, we want the benchmark to be a general indicator of performance so that

other programmers can make use of its measurements.

3.4.L2.1.LINPACK
LlNPACK [62], once the indicator of floating point performance had stressed the

floating point and memory performance of computer systems by solving a dense system of

linear equations. A variation continues to be used to gauge supercomputers for the

Top500 list [89]. However, modern microprocessors are able to hold the entire data

structure43 in today's larger caches; this has largely made LlNPACK yet another

meaningless indicator of performance [27:332-334]. So LlNPACK neither provides a good

prediction of our nodes' performance, nor was it ever designed to gauge integer

performance, thus limiting its usefulness as a general metric.

3.4.1.2.2.NPB
There are sequential versions of NPB 2 [99] available, and they would certainly be

a good measure of the performance we can expect out of the LU application. While

generality is a secondary consideration, using NPB 2-serial to adjust the load for an NPB

application is too specific, and doing so could provide unrealistic expectations for real-

world applications.

3.4.1.2.3.SPEC
The SPEC benchmark suite [83] is considered to be the best general indicator of

performance for modern microprocessors. Both integer and floating point versions are

available, which means the suite is general enough to be used for other applications. And

43 320 KB.

55

the most current floating point version, SPECfp95, includes benchmarks44 that should

reveal very good indications of the performance we can expect with our application

[27:340-344]. The downside is that, in the interest of keeping the benchmarks from being

overtaken by improved hardware and/or compiler customizations, the SPEC benchmark

suite is updated every few years. Thinking beyond the immediate thesis effort, switching

to the new suites when they are released would require rebuilding the map for the entire

system, yet failing to upgrade to the new suites would result in poor measurements for the

newer hardware. Nevertheless, this is the best option of those considered so far.

3.4.1.2.4.HINT
HINT, though, has advantages over SPEC. HINT is a memory-oriented

benchmark that constrains neither problem size, number of iterations, or running time. It

reports "quality improvements per second" (QUIPS) that is determined by calculating the

area under a curve to finer and finer degrees of precision. In this fashion, the problem

continues to grow until no further improvements in the calculation can be realized. The

benchmark can be compiled for any intrinsic data type, including integers using 8 bits,

16 bits, 32 bits, and 64 bits, and floating point numbers using 32 bits, 64 bits, 80 bits (on

Intel processors), and 128 bits (on processors that support quad-precision). The QUIPS

rating reflects the processor performance for whichever data type is being evaluated, the

memory hierarchy from LI cache to swap space, unit- and non-unit-stride memory

performance, and numerical accuracy. So, HINT can provide a "good" indication of a

computer's performance for memory-bound computation-intensive applications,

44 Mesh generation, shallow water simulation, partial differential equations, Monte-Carlo computation,
fluid-dynamics, multigrid solver in three-dimensional potential field, turbulence modeling, weather
prediction, quantum chemistry, and Maxwell's equations.

56

regardless of its dominant data type. In particular, HINT'S results have been shown to

correspond well with NPB's results [82]. We conclude, then, that HINT is a good metric

both for our specific case and for general use as well.

HINT stores the results of its calculations to disk to permit plotting the

performance as a function of memory usage or execution time, and it also reports a single

QUIPS value that is the integral of that plot [27:339]. It is this single QUIPS value that

we are interested in.

3.4.1.2.5.Quick 'n' Dirty Benchmarks
One of our desires is to be able to measure the nodes' capabilities with as little

overhead as is possible. So far, we have discussed doing this by amortizing the cost of

measuring the nodes' capabilities. The method we are using to achieve this amortization is

by creating a map from system information to the benchmark results. This rather forces us

to ask ourselves if we're not overlooking something obvious. One of the pieces of

information available to us from /proc /cpuinf o is the OS' measure of how fast a

certain kind of busy loop runs [92]. As long as we're already obtaining this information, it

costs us nothing but processor time to determine if BogoMIPS can be used to provide

effective and cheap load balancing. In a similar vein, we can create an inexpensive routine

that loops through a series of floating point operations to create a crude Mflops rating.

This has the additional benefit that it is not dependent on the OS. A fall-out of being

usable on a non-Linux OS is that we can also use this crude Mflops rating to index the

benchmark results on other systems.

57

3.4.2. Implementation

3.4.2.1. Language Selection
As with the application, we must consider the implementation language for the

measurement library. With the application, the driving consideration was that the

application was already written in Fortran 77. With the metric library, we do not

modifying preexisting code; rather, the library is new software, free from the constraints of

others' implementation decisions. The only consideration is functionality.

The first element of functionality is that it must function with the application. That

is, the Fortran code must be able to call the metric code and receive useful data back.

When Fortran calls a subroutine or function, it uses call-by-reference [29:96-98].

Obviously, writing the metric library in Fortran would satisfy the requirement that the

application code be able to interface with the metric code. But what alternatives are

there? We address Ada 95, Java, and ANSI C/C++.

We can immediately rule Ada 95 out. Some Ada compilers use call-by-

copy/restore, while others use call-by-reference [86:70]. This ambiguity does not facilitate

integrating the software with the Fortran code. Further, if call-by-copy/restore is used,

then we cannot interface the application software with the metric software. Java passes

intrinsics by value and objects by reference [91:44]. Since intrinsic data types are passed

between the application and the metric software, we can now also rule out Java. Besides

the obvious choice of Fortran, we are now left to consider C and C++. Both C and C++

are call-by-value, except that the value passed can be a memory address, which effectively

provides for call-by-reference as well [86:69-70].

58

In the interest of abstracting the application programmer from the details of the

metric software, we would like the metric library to offer a single interface to the

application software that accepts certain parameters to define which measurement

technique should be used. In this fashion, the application programmer needn't be

concerned with the semantics of the functions that actually perform the measurements.

Since the combination of arguments to the front-end varies, depending on the

metric technique preferred, we must have some way to deal with the different

arrangements of parameters. C++ (and Java & Ada 95) provide for function overloading

[20:73]. C's stdarg library includes variable argument functions which can result in

convoluted code to properly interpret the arguments [46:462-463]. No mention of

variable arguments with Fortran was found in our literature review. The problem with

C++ (as well as Java & Ada 95) is that they are object-oriented, and Fortran is not. As

such, Fortran can not interface with the name-mangled code produced by an object-

oriented compiler.

Another issue is that we want to provide for identical syntax, regardless of the

calling language. Fortran compilers append one or two underscores after subprogram

names and assume that subprograms are compiled similarly. C compilers do not append

underscores to subprogram names and assume the subprograms are compiled likewise. If

the front-end (weighnode ()) is compiled with Fortran, then an application programmer

using C must be prepared to call weighnode_ () or weighnode (), while a

Fortran application programmer calls weighnode (). This may be considered a minor

irritation, and one that can easily be incorporated into programmers' mindset, but it

violates our desire that application programmers be offered identical syntax such that they

59

need not be concerned with the language in which the library is written. On the other

hand, we need not provide such an abstraction to the library programmer. If we write the

library in C, then we can create three front-end functions, weighnode (),

weighnode_ (), and weighnode (), and specify that the application programmer

always pass the arguments by reference. Then, whether the library be called from a C

application or a Fortran application with either trailing underscore setting, and the

application programmer always addresses it as weighnode (), not caring about the

library's implementation language.

Finally, the implementation language must be able to actually perform the

measurement. Both C and Fortran, can execute the simple floating point test proposed in

Section 3.4.1.2.5, naturally. Similarly, both are able to parse an ASCII text file, which is

how /proc/cpuinf o appears to the program. But we would like to be able to use

HINT - or any other benchmark we might want to try in the future - without having to

modify its source code. So our implementation language must be able to issue commands

to the system to initiate the benchmark, and it must be able to create a pipe to read the

system's stdout. C's intimacy with UNIX (and by extension, Linux) [46:1-2] makes it

ideally suited to interfacing with the OS.

Clearly, C is the best option for implementing the NodeMetric library. It can

interface with either a Fortran or a C application; it can provide for uniform semantics to

the application programmer; it has facilities to interpret variable arguments; and it can

interface with the OS to obtain the benchmark results without forcing us to recode the

benchmark.

60

3.4.2.2. Implementation of NodeMetric Library

As mentioned in the last section, we wish the NodeMetric library to have a single

interface to the application with common semantics, regardless of the application

language. This front-end to the library is are the weighnode () functions, found in

Section C.l. All the information the application programmer needs is available in the

weighnode. h45 file. The weighnode () functions interpret the arguments provided

by the application programmer to call the appropriate functions that actually measure the

nodes' performance.

The original intent was to write only one function that calls the functions which do

the measurement, and the other front-end functions would receive the parameters from the

application and pass them in-turn to the primary front-end. Doing so would have

simplified code maintenance, in that bug-fixes and the addition of features would require

the modification of only one function. The problem, though, is that the greatest coding

effort is in decoding the variable arguments. The secondary front-ends would not be able

to blindly forward the arguments to the primary front-end; they must first determine which

arguments and of what type.46 Adding features, and possibly fixing errors, would require

changes to the variable argument decoding. So long as the secondary front-ends must

fully decode the arguments, there is no value in them calling the primary front-end. At this

point, code maintenance can be more easily achieved by making modifications to one of

the functions, testing, and then copy-and-pasting the function body into the other two

functions. This is precisely how the weighnode () functions were developed.

45 See Section C. 1.1.
46 The use of void pointers was attempted to avoid this obstacle, but this attempt did not solve the problem.

61

Based on the arguments passed to it, the weighnode () functions takes one of

nineteen possible actions:

a) For an invalid argument combination, they return a weight of zero to indicate an error.

This value was chosen because it draws attention to the error even if the application

programmer does not check for it, e.g., through division-by-zero.

b) If the application programmer wishes, the front-end functions return a floating-point

value that the application programmer passes to the front-end function. The utility of

this feature is that it allows programmers to specify the load balancing, regardless of

the weights the NodeMetric library could return, without altering the application

structure. They might use this to give all nodes equal weights, for testing purposes, or

they might find some other function that they believe provides a better metric and,

again, they don't wish to change the application to test it.

c) The front-end functions can call an internal function to execute the HINT benchmark

for one of five datatypes, a short integer (short), a long integer (int), a long long

integer (longlong), a single-precision real (float), or a double-precision real (double).

We don't expect this option to be exercised much.

d) The weighnode () functions can call the internal function that parses the

/proc/cpuinf o file. Optionally, it passes the results to another internal function

that maps the first function's output to the QUIPS value provided by one of the five

datatypes for which we compiled HINT.

e) The functions may call the function that provides a very simple test of the processor's

floating point performance. In turn, this result also can be passed to a function that

maps to a QUIPS value for one of the datatypes.

62

The library's internal functions are located in two files, metric . c47 and

metricmap. c.48 In addition to these files are header files metric. h and

metricmap. h, which contain the function prototypes; the header files can be included

in any file, such as weighnode. c, that call the internal functions. The header file

nodeinfo.h provides the data structure for the mapping functions, as well as functions to

read and save the maps. Finally, buildmap. c is the only file that is intended to produce

an executable file; its purpose is to build and expand the files that map from the

inexpensive benchmarks to the HINT results. Discussion of buildmap. c is

unnecessary, as the same issues are addressed during the discussion about

metricmap. c.

3.4.2.2.1. me trice
Three functions are included in metric. c: parse_cpuinf o (),

calc_pi (), and run_hint ().

There is little left to discuss concerning parse_cpuinf o (). It opens

/proc/cpuinf o for read-only, reads the file until the string "bogomips" is found, reads

in the BogoMIPS value, closes the file, and returns the BogoMIPS value. This version

does include some assumptions that do not hold for the general case.

First, parse_cpuinf o () assumes there is only one processor per node - the

function only reads the first BogoMIPS value it finds. This shouldn't be a problem, since

all processors within an SMP node should be identical. This version also assumes the

manufacturer and model of the processor are irrelevant. Different implementations of the

47 See Section C.2.
48 See Section C.3.

63

IA may provide different BogoMIPS ratings, which can be misleading. For example, the

branch prediction scheme in AMD implementations result in higher BogoMIPS values

than an equivalent Intel processor [92]. Further, according to van Dorst [92], similarly-

clocked Intel 80486 and Pentium processors have similar BogoMIPS, yet the Pentium's

floating point unit is far, far superior to that of the 80486 [14:622,679]. At this stage in

the ABC's development, this assumption is not a problem - the difference between the

FPU in the P5 processor core in the Pentium and the P6 processor core in the Pentium II

is not as dramatic as is the difference between the 80486 and the P5 [14:679,699]. Should

new implementations of the IA be introduced to the ABC, then parse_cpuinf o () will

need to be adjusted to consider the make and model and then scale the BogoMIPS value

appropriately before returning.

The next function, calc_pi (), times a series of floating point calculations and

reports back the number of floating point operations completed per second. Making use

of the "constructive laziness" adage, that "it's almost always easier to start from a good

partial solution than from nothing at all" [68:3], we find code that can be reused from the

MPICH [9] distribution. Included in the example code with MPICH is a file that

calculates the value of pi by determining the area under a curve. Removal of the parallel

constructs from its kernel gives us a very simple test of the processor's FPU and branch

prediction scheme (as well as the compiler's ability to optimize small loops).

This function requires between one and thirty seconds to execute, depending on

the number of iterations of the loops are executed. In testing calc_pi, we find that 222

iterations provides a good value in about a second - more iterations yield similar values

but require more time, and fewer iterations provide results that are not as good.

64

As an interesting side-note, when weighnode () calls calc_pi (), an address

for calc_pi () to place the result of the calculation must be passed as an argument.

Without this argument, an optimizing compiler would (and did!) recognize that pi is not

visible outside the function, so there is no need even to calculate pi, and the entire function

is optimized down to timing the empty space between two calls to clock ().

The sole purpose of run_hint () is to launch the HINT benchmark and retrieve

the single QUIPS rating that HINT provides. The initial effort is geared towards creating

a child process that calls execv () to transmogrify into the HINT executable code. We

are unwilling to change the source code for the benchmark because we would like to be

able to implement other benchmarks in the future with minimal effort; this means we

cannot explicitly pipe the output from the child to the parent process, the challenge is to

capture the child process' stdout. It doesn't take long to discover that we are making

our task more difficult than it need be.

We can make use of C's ability to issue commands directly to the operating

system. In particular, we can make use of C's ability to create a pipe between a program

and the system command [46:397-398]. By opening a read-only pipe to the operating

system when we issue the command to launch HINT, the information HINT places in

stdout can be parsed by run_hint () as though it were a file, allowing us to obtain

the QUIPS value.

3.4.2.2.2.metricmap. c & buildmap. c

The functions convert_parse_cpuinf o () and convert_calc__pi ()

each map the result of a simple metric to the result of a previous execution of the HINT

65

benchmark. Implementation considerations for these functions and the buildmap

executable are so intimately related that we shall consider them both in this section.

The first consideration is the data structure for the map files - "smart data

structures and dumb code works a lot better than the other way around" [68:7]. Our first

effort is implementing an elegant almost-complete binary search tree (BST) that finds the

appropriate mapping in ^log2«) time and stores the BST on disk and in memory in such a

fashion as to minimize disk access time and make good use of cache for large data sets. In

the process of isolating bugs, we realize that for small n, there isn't an appreciable

difference between searching in Oilog2n) time and 0{n) time, and that for small data sets,

the elegant solution would spend more time accessing the disk than would reading the

entire data set at once. For this reason, we implement a simple linear list instead. This

does not appear be a bad decision, as testing indicates mapping the metric functions'

outputs to a QUIPS value adds only about a second to the process of weighing a node.

Each element of the list has seven fields - the key that the metricmap functions

compares against their input, five values corresponding to the QUIPS that HINT produces

for five datatypes, and a field to indicate the size of the list.

Recognizing that the input to the metricmap functions might not correspond

exactly to one of the keys in the list, we decide how to deal with this eventuality. Ignoring

the problem and returning an error is not an acceptable solution. Instead, we make the

reasonable assumption that if the input is between two known values, then the output must

likewise be between the mapped outputs of the two known values. Lacking any better

knowledge about the exact relationship between the input values and the output values,

we linearly interpolate to get the output. What about extrapolation? If the input is

66

outside the range of known values, what action should be taken? Again, ignoring the

problem is not viable. Inputs less than the smallest known value can easily be treated by

interpolating between the smallest known value and zero - this decision is made implicit in

the mapping functions by making the smallest value in the list zero. Inputs greater than

the largest known value are not so easily dismissed. Extrapolating beyond the range of

known values is not a safe practice if the nature of the relationship between inputs and

outputs is not known. We certainly don't want to overcorrect the partitioning so as to

make the load balance problem worse. For this reason, we do not extrapolate beyond the

largest known value; inputs greater than that value are mapped to that largest known

value's output.

Finally, because the calc_pi () function can produce different outputs on the

same processor, as a function of the number of iterations it progresses through, and as a

function of other random activities on that processor, it is unwise to map a single value

produced by calc_pi () to each QUIPS value. In the same vein, it is unwieldy to map

every value calc_pi () produces to each QUIPS value for that processor. Instead, we

take advantage of the interpolation we already incorporated. When adding a processor to

the map, we execute parse_cpuinf o () once (since it always returns the same value),

but we execute calc_pi () eight times over the range of "good" iteration values that

were determined empirically. The largest and smallest of these values are used as keys to

the QUIPS values for that processor; any runtime values that fall between this minimum

and maximum have an output "interpolated" between two identical QUIPS ratings.

67

3.5. Design of Experiments
The first question is the size of the problem size we wish to test. The "sample"

and "workstation" classes can be dismissed as unsuitable for these tests because they do

not sufficiently task the system. This leaves problem sizes A, B, and C. We have already

demonstrated that the A-class problem only fits on ABC 12 by placing some of the unused

memory allocation in swap space.49 The B-class problem requires 162 MB,50 and ABC12

has only 96 MB virtual memory total.51 Since the B-class cannot be used with ABC 12,

we therefore use the A-class to test our load balancing algorithm.

We could blindly execute the software on every combination of two, four, and

eight processors possible. This is not only undesirable, it is unnecessary. Since the

processors are not all unique, we need not use every possible combination of processors to

fully characterize the system, we could just use every unique combination of 200 MHz,

333 MHz, 400 MHz, and 450 MHz processors. Given the finite time available for

experiments, even this is undesirable. Instead, we need to consider exactly what we wish

to learn. We desire to learn how the load balancing algorithm developed in Section 3.3

affects the performance of the application for different combinations of processors. We

can achieve this by looking at different ranges of capabilities.

At one extreme, we would include both the 450 MHz processor and the 200 MHz

processor. At the other extreme (for the two- and four-processor cases), we would use

only the 450 MHz processor and 400 MHz processors. Between the two extremes, the

least powerful node would be a 333 MHz processor. By looking at ranges of capabilities

instead of combinations of processors, we reduce the number of combinations to test

49 See Section 3.3.2.2.

68

down to eight: three two-processor combinations, three four-processor combinations, and

two eight-processor combinations.

The next question is which versions should we test? Naturally, we execute the

unmodified code to compare results against those produced by code whose performance

we haven't affected. Since our load balanced code uses striped partitioning, we also

execute the unbalanced code with striped partitioning. To be able to account for the

performance impact of overallocating memory for the partitions, we execute the code with

this overallocation, but with each processor reporting identical weights to the load

balancing algorithm. Finally, we test the three weighting approaches for load balancing,

BogoMIPS, Mflops, and QUIPS. To reduce the cost of using QUIPS, we use our

library's ability to map from the BogoMIPS rating to the QUIPS rating.

A critical issue is how to measure performance, so that we can determine if, and

how much, the performance has improved. Any computer engineer should emphasize that

time is the one true measure of performance - the system that obtains the same (correct)

solution in the least time is the fastest [64:52]. Using "million instructions per second"

(MIPS) is generally unsuitable since it varies with the number of instructions used to

obtain the solution, the instruction mix, and when comparing different platforms, the

instruction set and clock rate [64:60-61]. "Million floating point operations per second" is

only slightly better since it specifies the type of instructions we're interested in; however,

it is still a function of the algorithm used and the underlying platform [64:64-65]. The

authors of [34] make the case for "quality improvements per second" as a computer

system metric, but it is particular to the HINT benchmark and cannot be used to measure

50 1023/643=4.05. The B-class requires 4.05 times the memory required by the A-class.

69

the performance of an application. We shall use Mflops as our metric to compare the

performance with different partitioning schemes since the underlying platform is fixed, the

algorithm is fixed, and the LU application reports the Mflops sustained during execution.

Our load balancing algorithm does not affect the total number of floating point operations,

so in this case, Mflops is proportional only to the inverse of time. The reason we choose

not to use execution time is because there are results in which the execution time of one

case is several thousand seconds while the execution time of each of the other cases in the

test is a couple hundred seconds. When graphing these results, if time is used, then the

very slow case forces a scaling that hides the relative performance of the other cases. If

Mflops is used, then the very slow case is represented as a very small value and does not

affect the scale of the graphs.

We also wish to know whether load balancing allows us to make use of the

weakest processor in the cluster, or if the performance achieved with load balancing is still

worse than the performance achieved without using that processor at all. This leads to

tests using one, three, and seven processors in combinations that match the broadest

combination of two, four, and eight processors, except for the absence of the 200 MHz

processor. This is not possible with the unmodified code's checkerboard partitioning, but

the versions with striped partitioning can still be used for these tests.

We wish to characterize the performance of the system with more than eight

processors in use. For this reason, we execute the code on all twelve processors and on

51 See Table 2-2.

70

eleven processors (excepting the 200 MHz processor). Feedback from the results of these

tests52 lead to tests with other numbers of processors greater than eight.

The final two questions deal with statistical validation of our results. We need to

determine how many executions of each test should be performed. Ideally, we run the

tests twenty or thirty times to obtain small confidence intervals.53 However, because the

time the tests require - particularly for the tests with fewer processors - we instead

choose to execute each test five times, leaving the option open to run more tests if some

results are statistically ambiguous.

After conducting the experiments, we must analyze and present the results. When

presenting the results in graph form, we use box plots because they provide a visual

impression of the location, spread, and skewness of data sets, and they are particularly

useful for comparing multiple data sets [57:206].

When comparing the performance obtained with load balancing against that

obtained without, we always test the set of values obtained with load balancing against the

best performance obtained without. Likewise, when determining whether load balancing

permits improved performance by adding a weak processor, we compare against the best

performance obtained without the extra processor.

We do not report speedup using the traditional definition, "the ratio of the time

taken to solve a problem on a single processor to the time required to solve the same

problem on a parallel computer with/? identical processors" [48:118], because we are not

executing LU on identical processors. Instead, the speedup we report is the ratio of the

52 See Section 4.5.
53 The size of the confidence interval is inversely proportional to the square root of the number of data
points [57:265].

71

time taken to solve a problem on p heterogeneous processors without asymmetric load

balancing to the time required to solve the same problem on the same processors with

asymmetric load balancing.

We must conduct statistical tests to conclude whether the load balanced

performance is an improvement over the best unbalanced performance or not. The

problem that arises is that with five data points, we cannot neglect the question of whether

the performance results are normally distributed [57:277]. Examination of the

performance box plots suggests the data is not normally distributed, but the Lilliefors test

for normality [57:278-280] cannot establish that the data is not normally distributed,

either. We must, therefore, err on the side of caution, and use a test that does not rely on

a normal distribution; specifically, we use the Wilcoxon signed rank test [57:285-288].

For the cases where the load balanced performance for all five data points is always

greater than (or always less than) the best unbalanced performance, the Wilcoxon signed

rank test allows us to conclude that the load balancing has (or has not) improved

performance with a 0.03125 level of significance.

Executing the tests hundreds of times until the results are tightly clustered around

the "true" values and outliers can be isolated and dismissed would be ideal. Given that

this is impractical, we use statistical tests to validate our results so other researchers can

make use of the software and techniques developed in this thesis effort to make more

efficient use of the AFIT Bimodal Cluster and other heterogeneous clusters of PCs.

54 In the analysis, significance values are obtained from
http://fonsg3.let.uva.nl/Service/Statistics/Signed_Rank_Test.html

72

3.6. Summary
We opened this chapter with a discussion about how the AFIT Bimodal Cluster

was developed. Next, the selection of the application was addressed, followed by the

changes made to the application. This discussion began by considering the design of LU's

original decomposition algorithm and progressed into the design and implementation of

the partitioning algorithm we wished to test.

Next, we looked at measuring the performance of the compute nodes, beginning

with a discussion on how to do this better than others have in the past, followed by a

discussion on what our options are to provide the measurement, and ending with a look at

implementation issues. Wrapping up the chapter, we presented an outline of the

experiments that test our load balancing scheme.

73

IV. Results & Analysis

In the last chapter, we discussed the development of the load balancing software

and the design of the experiments to test the software. This chapter presents the results

and analysis of those experiments.

This chapter is organized as follows: Sections 4.1 through 4.4 presents the results

of the major experiments conducted for this thesis. Section 4.5 addresses the performance

of LU on the ABC beyond eight processors. Finally, Section 4.6 discusses some results

tangential to the focus of this thesis effort, namely NaN exceptions that are generated for

certain cases, the effect of non-unit stride memory access, and the experimental price-

performance ratio.

4.1. One-Processor Results
Load balancing is nonsensical when the load can be assigned only to one

processor. The original intent was to run the one-processor case five times for only the

450 MHz Pentium II node with checkerboard partitioning and both rowwise and

columnwise striped partitioning, as a baseline for other comparisons. However, when

NaN exceptions were found to have impacted the results of the four-processor and single-

processor checkerboard partitioning cases,55 the single-processor checkerboard and

columnwise striped partitioning cases were rerun five times on one node of each type56 to

determine if a particular node was producing faulty results, perhaps as a result of bad

memory.

55 See Section 4.6.1.

74

Due to the extra demand of page faults, ABC 12 had not yet completed the second

execution of LU by the time the other processors had finished their single-processor runs,

and the queued executions of LU on ABC 12 were terminated. The results of this test are

discussed in Section 4.6.1.

4.2. Two-Processor Results

Three combinations of two-processors are tested; these combinations are the

450 MHz Pentium II with either the 400 MHz Pentium II, the 333 MHz Pentium II, or the

200 MHz Pentium. The Checkerboard partitioning case is run only once for each

combination, as

a) we were being cautious about spending processor time on tests that result in NaNs;

b) the other cases which had not generated NaN exceptions indicated that the striped

en

partitioning was producing better performance than the checkerboard partitioning,

and our comparison for load balancing speedup uses the best unbalanced performance;

and

c) for the two processor case, there is no difference in the partitioning between the

checkerboard and rowwise striped partitioning,58 and when the exact amount of

memory is allocated for rowwise striped partitioning, there is no performance

difference between it and columnwise striped partitioning.59

All other two-processor tests used the full five executions, as described in Section 3.5.

56 ABC03, ABC09, ABC11, ABC12.
57 See Section 4.4

1 The LU application checkerboard partitioning divides the rows before it divides the columns [61].
59 See Section A. 1.2.

75

4.2.1. 1x2001x450
Figure 4-1 is a box plot showing the megaflops performance results of the six tests

conducted for the two-processor case, specifically for the case in which a 450 MHz

Pentium II and a 200 MHz Pentium are used. The boxes show the interquartile ranges,

and the "whiskers" extend to the limits of the data.60

The "Unbalanced Checkerboard" plot is for the unmodified data partitioning

scheme, and the "Unbalanced Col Striped" plot shows the results of changing the

partitioning to columnwise striped partitioning, without implementing asymmetric load

balancing. "Equal Weight" is from code that has been modified to permit asymmetric load

balancing, but each node is weighted the same; this permits us to assess the performance

penalty induced by allocating more than sufficient memory on each node. The last three

plots, "B'MIPS Weight," "Mflops Weight," and "QUIPS Weight" are the results of

applying the three different weightings to the asymmetric load balancing algorithm.

60 As with all the cases tested, all values for this case are within the bounds of the inner fences.

76

Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS
Checkerboard Col Striped Weight Weight

Figure 4-1. Performance with & without load balancing - 2 processors,
1x200 1x450.

Casual inspection of the Figure 4-1 shows that with processors as disparate as a 200 MHz

Pentium and a 450 MHz Pentium II, we realize a substantial performance improvement,

and as explained in Section 3.5, the Wilcoxon signed rank test tells us that for each of the

weightings, there is nearly a 97% probability that the true value of the load balanced

performance is greater than the best unbalanced performance.

A contrast between the unbalanced case and the "equal weight" case reveals the

penalty for excessive memory allocation is, on average, 5.0%, with a standard deviation of

0.72%. As can be seen in Figure 4-2a, the load balancing scheme provides a performance

boost of between 64.9% and 83.4% over the best unbalanced performance. This breaks

out as 69.8±0.17% improvement using the BogoMIPS weighting, 82.9±0.95%

improvement using the Mflops weighting, and 65.0±0.03% improvement using the QUIPS

weighting.

77

Accounting for the memory penalty, we observe in Figure 4-2b that the load

balanced code performs 72.9% to 92.3% better than the "equal weight" code with the

memory penalty. Specifically, 78.0±0.18% for BogoMIPS, 91.7±1.00% for Mflops, and

72.9±0.03% for QUIPS.

(a)

Unbalanced
Col Striped

B'MIPS
Weigh!

QUIPS
Weight

(b)

Figure 4-2. Speedup over best non-load balanced performance - 2 processors,
1x200 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

Given that there is such a difference in the capabilities of the two processors, might

we have been better to not have used the Pentium? The answer, in this case, is clearly no.

78

The best performance on a single 450 MHz Pentium II is 60.17 Mflops. The worst

performance on the 450 MHz Pentium II and 200 MHz Pentium, when load balancing is

used, is 63.93 Mflops. Granted, this is an improvement of only 6.2%, but this is also

contrasting the best uniprocessor performance with the worst load balanced two-

processor performance. Using the best weighting (in this case the Mflops weighting), we

realize a 17.8±0.61% improvement over the best uniprocessor performance.

4.2.2. 1x3331x450
If instead of a 200 MHz Pentium, we use a 333 MHz Pentium II in conjunction

with a 450 MHz Pentium II, we obtain the performance indicated in Figure 4-3. Two

aspects are immediately obvious. First, the performance gain over the unbalanced code is

not appreciable. Second, the memory penalty is greater.

90-

I ■ 1 i , .

80 □ np
i

70 i ' i
60

i

a50
o B
^40-

30-

20-

10-

0- 1 1 1 1 1 1
Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS

Checkerboard Col Striped Weight Weight

Figure 4-3. Performance with & without load balancing - 2 processors,
1x333 1x450.

79

Examining Figure 4-4, we can quantify those observations. Not only is the

performance gain over the unbalanced code unappreciable, it is nonexistant. The best load

balanced performance is still 0.4% shy of the best unbalanced performance.

With this combination of processors, the penalty for excessive memory allocation

is 20.9±3.55%. Using the best performance of the equally-weighted partitioning with

memory penalty as a baseline, the BogoMIPS weighting provides an improvement of

15.8+3.31%, the Mflops weighting offers a 15.7±4.32% improvement, and the QUIPS

weighting improvement is 12.5±9.55%.

4.2.3. 1x4001x450
The last set of two-processor tests use two processors with similar capabilities,

namely a 400 MHz Pentium II and a 450 MHz Pentium II (Figure 4-5).

80

1.8

1.6

1.4

1.2

ills! nib
0.8

0.6

illll

0.4

0.2

(a)

Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS

Checkerboard Col Striped Weight Weight

1.8

1.6

1.4

1.2 r r

r

0.8

0.6

0.4

0.2

(b)

B'MIPS Weight Mflops Weight

version

Figure 4-4. Speedup over best non-load balanced performance - 2 processors,
1x333 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

As with the tests in Section 4.2.2, the load balanced codes underperform the

unbalanced code by 12.5±9.55% collectively. This is not surprising, considering the

memory penalty averages 18.1%. Taking the memory penalty into account, though, the

load balancing algorithm provides performance improvements between of 4.3+0.13%,

4.5±0.12%, and 4.9±0.06% (Figure 4-6b).

81

CP

Unbalanced Unbalanced Equal Weight B'MIPS Mf lops Weight QUIPS
Checkerboard Col Striped Weight Weight

Figure 4-5. Performance with & without load balancing - 2 processors,
1x400 1x450.

4.3. Four-Processor Results
As with the two-processor tests, the four-processor tests made use of three

combinations, in which the least powerful processor was a 200 MHz Pentium, a 333 MHz

Pentium II, and a 400 MHz Pentium II, respectively. Like the uniprocessor tests, we

found that the code with the block checkerboard partitioning was plagued with NaN

exceptions.

82

(a)

Unbalanced Unbalanced Equal Weight B'MIPS Mflopa Weight QUIPS

Checkerboard Co) Striped

version

Weight Weight

1.8

1.6

1.4-

1.2

%
«1

O.B

0.6

0.4-

0.2

B'MIPS Weight Mflops Weight

version

(b)

Figure 4-6. Speedup over best non-load balanced performance - 2 processors,
1x400 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

4.3.1. 1x2001x333 1x4001x450

In the tests with one processor of each type, we observe (Figure 4-7) that the

memory penalty is minimal, and that greater improvements are realized when load

balancing is implemented. More specifically, the performance of the "equal weight"

partitioning is only 3.3±0.47% less than the "unbalanced" performance.

83

-t- -+- -+- -+-
Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS

Checkerboard Col Striped Weight Weight

version

Figure 4-7. Performance with & without load balancing - 4 processors,
1x200 1x333 1x400 1x450.

The speedup over the unbalanced code (Figure 4-8) is 60.9±0.02% when weighing

the nodes with BogoMIPS, 69.8±1.33% when weighing with Mflops, and 83.1+0.17%

when using QUIPS. Accounting for the memory penalty, these numbers increase to

65.1±0.03%, 74.4±1.37%, and 87.9±0.17%, respectively.

As with the two-processor case with the Pentium, we ask whether the low-end

processor contributes to the performance. Since the power-of-two processors

requirement was removed, we were able to execute LU using three processors, using a

combination identical to the combination discussed in this section, except that the Pentium

was not used. The results of this test are in Table D-3.

84

Unbalanced
Col Striped

B'MIPS
Weight

QUIPS
Weight

(a)

B'MIPS Weight Mflops Weight QUIPS Weight

vtralon

(b)

Figure 4-8. Speedup over best non-load balanced performance - 4 processors,
1x200 1x333 1x400 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

Curiously, the performance of the code with the "memory penalty" is better than

that for the code without the penalty. Given the tight variance for each61 and the fact that

the nodes were dedicated for these tests, it is difficult to attribute this reversal to

competition for the processors. Nevertheless, the best performance for the three-

processor case is 134.9 Mflops, using QUIPS-weighted load balancing. Using QUIPS-

61 o2=0.00297 Mflops2 & o2=0.02052 Mflops2, respectively.

85

weighted load balancing, the four-processor case with the Pentium outperforms the best

three-processor performance by 7.9±0.13 Mflops, or 5.9±0.10%.

4.3.2. 1x333 2x4001x450
The next tests replace the Pentium with a 400 MHz Pentium II; the results are

shown in Figure 4-9. As with the two-processor tests without the Pentium, the

performance improvement with load balancing is not appreciable.

t=P

Unbalanced
Checkerboard

Unbalanced
Col Striped

Equal Weight B'MIPS
Weight

Mflops Weight QUIPS
Weight

Figure 4-9. Performance with & without load balancing - 4 processors,
1x333 2x400 1x450.

The memory penalty for this combination is also low, 3.5±0.14%. The load

balancing schemes do not show an improvement over the unbalanced code (Figure 4-10),

except for one instance in which the load balanced code exceeds the best unbalanced

performance by 0.2%. Even comparing against the best equally-weighted code with the

memory penalty, the best load balanced performance is a 3.7% improvement; only the

QUIPS weighting provides an improvement of 2.2±1.38%. No value from the Mflops

86

weighting is greater than the best equal-weighted performance, and the Wilcoxon test

suggests a 69% probability that the true BogoMIPS-weighted performance is less than the

best equal-weighted performance.

(a)

Unbalanced
Col Striped

B'MIPS
Weight

QUIPS
Weight

(b)

B'MIPS Weight Mflopa Weight

version

Figure 4-10. Speedup over best non-load balanced performance - 4 processors,
1x333 2x400 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

4.3.3. 3x4001x450

The final four-processor combination uses three 400 MHz Pentium IIs and a

450 MHz Pentium II, with the results shown in Figure 4-11.

87

s.
o 100
s

Unbalanced
Checkerboard

Unbalanced
Col Striped

Equal Weight B'MIPS
Weight

Mllops Weight QUIPS
Weight

Figure 4-11. Performance with & without load balancing - 4 processors,
3x400 1x450.

The penalty for overallocating memory is somewhat greater than it is in the other

four-processor cases, 4.3±0.11%. Only with QUIPS weighting does the load balancing

outperform the unbalanced code (Figure 4-12), by 4.3±0.54%; QUIPS weighting

outperforms equal weighting by 8.8±0.56%, and Mflops weighting does by 0.8±0.37%.

4.4. Eight-Processor Results
The last set of tests make use of eight processors. There are two such

combinations, one with the least powerful processor a 200 MHz Pentium, and one with

the least powerful processor a 333 MHz Pentium II. Unlike the two- and four-processor

tests, there are no eight-processor tests using only 400 MHz & 450 MHz Pentium IIs, as

there are not eight such processors in the ABC.

88

1.8

1.6

1.4

1.2 -

* r
0.8

0.6

0.4

0.2

Unbalanced
Checkelboard

Unbalanced
Col Slripod

B'MIPS
Weight

QUIPS
Weight

(a)

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Equal Weight B'MIPS Weight Mflopa Weight

version

(b)

Figure 4-12. Speedup over best non-load balanced performance - 4 processors,
3x400 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

4.4.1. 1x2001x333 5x4001x450

In Figure 4-13 we observe that, as with the other experiments which use the

Pentium, the load balanced code shows considerable speedup over the unbalanced code.

We also notice a greater range of values than was present in the tests with fewer

processors.

89

^
l-~~l

Unbalanced Unbalanced Equal Weight B'MIPS Mf lops Weigh! QUIPS
Checkerboard Col Striped Weight Weight

Figure 4-13. Performance with & without load balancing - 8 processors,
1x200 1x333 5x400 1x450.

We observe in Figure 4-14 that the BogoMIPS weighted code has a performance

improvement of 47.4±12.2% over the best unbalanced performance; speedup with the

Mflops weighting offers 41.4±16.0%; and QUIPS weighting 58.9±7. 7%. Compensating

for the 7.7±3.2% memory penalty, and the three weighting schemes provide respective

improvements of 55.8±12.9%, 49.5±16.9%, and 68.0±8.1%.

Once again, we check to determine if including the Pentium is better than using the

same processors except the Pentium. The results of the seven-processor runs are in

Table D-3. We find that the worst unbalanced seven-processor performance is still better

than the best balanced eight-processor performance, likely due to the memory penalty.

90

(a)

Unbalanced
Col Striped

B'MIPS
Weigh!

QUIPS
Weight

1—"~\

-t-
t

r n-

■

B'MIPS Weight Mflops Weight

vartlon

(b)

Figure 4-14. Speedup over best non-load balanced performance - 8 processors,
1x200 1x333 5x400 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

Using one-tailed Wilcoxon signed rank tests, we determine that there is a 68.9%

probability that the QUIPS weighted eight-processor code has a greater performance than

the equal weighted seven-processor code with memory penalty. However, if the seven-

processor code is also load-balanced, then we find there is a 96.9% probability that the

QUIPS weighted seven-processor code outperforms the QUIPS weighted eight-processor

code.

91

4.4.2. 1x333 6x4001x450
The performance LU realized when using eight Pentium us is provided in

Figure 4-15. Casual observation reveals there is a noticeable penalty for allocating too

much memory and that only the QUIPS weighted partitioning offers performance benefits.

350 I I

300

250-

° 200-
£

150-

100-

50-

0- 1 1 1 1 1 1

Unbalanced Unbalanced Equal Weight B'MIPS Mflops Weight QUIPS
Checkerboard Col Striped (Col)

version

Weight Weight

Figure 4-15. Performance with & without load balancing - 8 processors,
1x333 6x400 1x450.

Figure 4-16 reveals that not a single instance of the load balanced code could

outperform the unbalanced code. Even taking the 15.8±0.61% performance loss due to

the memory penalty, neither BogoMIPS nor Mflops weightings can offer performance

improvements. Only QUIPS does, with a 0.0625 level of significance, offering a

3.4±3.2% improvement.

92

(a)

Unbalanced
Checkerboard

Unbalanced
Col Striped

B'MIPS
Weigh!

QUIPS
Weight

(b)

Equal Weight B'MIPS Weight Mllops Weight

version

Figure 4-16. Speedup over best non-load balanced performance - 8 processors,
1x333 6x400 1x450. (a) Compared to best unbalanced time.

(b) Compared to best unbalanced time with memory penalty.

4.5. Performance Beyond Eight Processors
A secondary goal in this thesis effort is to characterize LU's performance in

megaflops when using the entire ABC. Figure 4-17 shows the performance as a function

of the number of processors, when both the 450 MHz Pentium II and the 200 MHz

Pentium are included in the processors. Figure 4-18 shows the performance when the

fastest combination of processors are used for each quantity.

93

,-'""■

250-

^^^l
^-•^J^^

A
,s^~

1" 15°"
3

Jy
100

so

-Equal Weight

-BogoMIPS Weight

-Mllops Weight
-QUIPS Weight

(a)

(b)

Figure 4-17. Performance in megaflops as a function of number of processors:
broadest combination of processors.

(a) Up to network saturation, (b) Up to & past network saturation.

Figure 4-17a shows continuous performance improvements when using load

balancing, up to eight processors. Similarly, Figure 4-18a shows steady speedup, both

with and without load balancing, though QUIPS weighted load balancing does show

better performance than no load balancing.

94

300-

A

250-

^^
200

1 ^^^

150
x^--/

100
Jr

50-

2 3 4 5 6

tprocMton

-■-Equal Weigh!

-+-BogoMIPS Weight

—A~M(lops Weight

-»-QUIPS Weigh!
(a)

(b)

Figure 4-18. Performance in megaflops as a function of number of processors:
fastest processors, (a) Up to network saturation.

(b) Up to & past network saturation.

Figure 4-17b and Figure 4-18b show that beyond eight processors, performance

decreases and the variance of the measurements increases dramatically. The explanation is

that the ABC's ICN switch does not have unlimited capacity. Its internal capacity may

aggregate to 6.3 Gbps, but the effective network capacity is 800 Mbps [45:78]. Since

each process attempts to exchange information at the same time the other processes do,

network collisions become inevitable when more than eight processes are used; nine or

95

more nodes sending information at 100 Mbps each exceed the effective network capacity

of the switch.

4.6. Other Observations

4.6.1. Not-a-Number Exceptions
In the one- and four-processor cases, the code which uses block checkerboard

partitioning consistently generates NaN exceptions at some point during the solution,

which then propagate through to the rest of the solution. Handling all these exceptions

severely reduces the performance, to say nothing of the correctness of the solution.

As can be seen in Table D-19, this phenomenon did not always occur. Further, no

one else has reported such a problem [100]. We are unable to determine the source of

these NaNs. The binaries used during software development and during the experiments

were generated with the same compilers using the same options and the same libraries on

the same systems. During development, the code executed without exceptions using both

the hub and the switch, which eliminates the network as a potential source of the problem.

During experimentation, we executed the code on four different nodes, and NaNs were

generated on all four nodes, leading us to conclude that a single node is not the source of

the NaNs.

4.6.2. Effect of Non-Unit Stride Memory Access
To quantify the performance penalty of using rowwise striped partitioning,62 we

executed LU coded for rowwise striped partitioning on eight processors, including the

200 MHz Pentium (Figure 4-19). What we find is that, as expected, there was not a

62 See Section 3.3.2.2.

96

performance penalty if the correct amount of memory is allocated for each tile. However,

for the "equal weight" case, in which extra memory was allocated for load balancing, the

effect is that the Pentium node, with its 32 MB of memory, must constantly swap data in

and out of virtual memory, reducing the overall performance by two orders of magnitude.

ZJ

Unbalanced
Checkelboard

Unbalanced
Row Striped

Unbalanced
Col Striped

version

Equal Weight
Row Striped

Equal Weight
Col Striped

Figure 4-19. Performance with rowwise striped & columnwise striped partitioning
8 processors, 1x200 1x333 5x400 1x450.

4.6.3. Price-Performance

In determining a price-performance ratio, we must determine both the price of the

system and its specific performance. In the preceding sections, we discussed the

performance of the ABC when running the LU application.

To estimate the cost, we shall make three assumptions. First, each node has a

purchase price of $2000 when new, and the switch has a purchase price of $2500 new.

Second, the nodes' monetary value depreciates at a rate of 33% per year; the switch does

not depreciate. This depreciation is calculated for the time during which the experiments

97

were conducted. Third, for this analysis, only the costs involved in the Linux portion are

considered,63 and licenses for software not available for this thesis are not considered,

either.64 This brings the system price to $21,664, as shown in Table 4-1.

Table 4-1. Price of the AFIT Bimodal Cluster (Linux).

Quantity Purchase
Price

Purchase
Total

Age Depreciated
Price

Depreciated
Total

200 MHz
Pentium

1 $2,000 $2,000 19 months $1,061 $1,061

333 MHz
Pentium II

4 $2,000 $8,000 11 months $1,386 $5,544

400 MHz
Pentium II

6 $2,000 $12,000 7 months $1,584 $9,504

450 MHz
Pentium II

1 $,2000 $2,000 3 month $1,810 $1,810

Switch 1 $2,500 $2,500 — $2,500 $2,500
Software 1 $20 $20 — $20 $20

$26,520 $20,439

We notice that the best uniprocessor performance provides a price-performance

ratio of $34/Mflop at the "new" price and $31/Mflop65 at the depreciated price when only

that uniprocessor and the software is considered in the price. This demonstrates a

potential problem with the "price-performance" statistic, namely an implied assumption

that the objective is to obtain the best price-performance ratio when we run high

performance applications.

While we may be interested in achieving high performance computing at

commodity prices, once we have the system, our objective is to obtain the best

performance. In this case, the best performance is 370.35 Mflops using eight Pentium IIs

63 While the Windows NT license is included with most of the nodes at purchase, there are other licenses
for software used with Windows NT that do not impact this thesis, such as compilers and MPI
implementations.
64 Specifically, the price of the Fortran 90 license is not included.

98

(Section 4.4.2). When determining the price to achieve this performance, we can

determine the price one of three ways:

a) Use the price of just the eight nodes, the switch, and the software,

b) Use two-thirds of the price of the entire system, or

c) Use the price of the entire system.

The price-performance ratio using each of these approaches is shown in Table 4-2:

Table 4-2. Price-Performance Ratio.

Purchase Price
Price Price-Performance

Depreciated Price
Price Price-Performance

Option (a) $18,520 $50/Mflop $15,220 $42/Mflop
Option (b) $17,680 $48/Mflop $13,626 $37/Mflop
Option (c) $26,520 $72/Mflop $20,439 $56/Mflop

Since we are attempting to assess the price-performance ratio for the best

performance achieved using the system, the best answer is the one which considers the

price of the entire system, $56/Mflop.

4.6.4. Comparison with Other Platforms
To place our best performance of 370.35 Mflops with eight processors in

perspective, we compare this to the performance of other platforms executing the LU

application, reported in [99]; this comparison is summarized in Figure 4-20a. An IBM SP

(66/WN) was able to obtain 457.8 Mflops using eight processors, and an

SGI/Cray T3E-1200 reached 610.8 Mflops with eight processors. Clearly, the ABC's

performance is not on par with commercial supercomputers, but we expected this,

particularly due to the ABC's commodity ICN.

65 Rounding up to the nearest dollar.

99

So how does the ABC compare with other commodity clusters of PCs? The

results for Los Alamos National Laboratory's Loki and NAS' Whitney clusters are also of

interest. For eight 200 MHz Pentium Pro processors, the older Loki cluster obtained

222.3 Mflops, and Whitney obtained 338.8 Mflops using eight 200 MHz Pentium Pro

processors.

Pricing for the IBM SP is on the NAS website [99], and the pricing for the

SGI/Cray T3E [80], Loki [97], and Whitney [88] are available on their respective

websites. This provides us with sufficient information to make a price-performance

comparison, summarized in Figure 4-20b.

Using the same depreciation rules as for the ABC the current of the 64-processor

IBM SP (66/WN) is just over $1 million, and its performance is 2.68 Gflops. SGI lists the

price of a 32-node T3E-1200 as $630,000, and its 32-processor performance is

2.36 Gflops. The current price of the 16-node Loki is $24,683. Its best reported

performance for LU is 453.0 Mflops using all 16 processors, yielding $55/Mflop. The

42-node Whitney, interconnected with Fast Ethernet and Myrinet, has a current price of

$141,330, and its 32-processor performance with LU is 418.8 Mflops. This means the

price-performance for Whitney is $338/Mflop, using the rule that the price of the entire

system is used.

4.7. Analysis & Summary

In this chapter, we discuss the performance achieved using two, four, and eight

processors, using combinations of processors that have a broad range of capabilities and

100

that have a narrow range of capabilities, and using different weighting methods for our

asymmetric static load balancing.

600

1T500- 1
i 40°

i
8 300-

■■111
ääiS^P*

A 200

100

(a)

SGl/Cfay T3E-9O0 LANL Loki NAS Whitney AFIT Bimodal Ouster

(b)

IBM SP SGI/Cray T3E-1200 LANL Loki NAS Whitney AFIT Bimodal Ouster

Figure 4-20. Comparison of systems, using LU.A. (a) Eight-processor performance.
(b) Price-performance.

We find that when the range of capabilities is broad, all three weightings provide

performance improvements over the unbalanced code. When the processors are all nearly

equal in computational power, performance improvements are seen only after accounting

for the performance penalty due to allocating more memory than is necessary to hold the

partitions. Even then, there is not always a net improvement. We also find that when

101

there is a broad range of processor capabilities, the weakest processor slowed down the

arrival to the solution when using symmetric load balancing. But asymmetric load

balancing permits all processors to contribute to the solution; the exception is the eight-

processor case, in which the Pentium processor lessened the performance of the system

even with asymmetric load balancing.

We observe that in six of the eight combinations of processors considered, the

QUIPS weighting provides the best load balancing. Exactly why this should be so is not

entirely clear, though, as in four of these six cases, the QUIPS weighting produces the

same partitioning as one or both of the alternate weighting schemes that QUIPS

outperforms. We speculate this may be due to the extra code associated with the

run_hint () function affecting memory alignment, but without further investigation, we

can not make any such statement with certainty.

Further discussion and conclusions that can be drawn from these results are

presented in the next chapter.

102

V. Conclusions & Recommendations

As a result of this thesis effort, students and faculty at AFIT have ready access to a

low-cost high performance computing platform for their research, software and techniques

are available for those researchers to make more efficient use of this system, and they can

obtain this effective load balancing with less overhead than other static assymetric load

balancing approaches.

But there is still more work that can be done in this field of research. The results

& analysis presented in Chapter iv lead us to certain conclusions about the load balancing

algorithm developed in this thesis research. We also make recommendations for future

work with asymmetric load balancing and for the continuing development of the AFIT

Bimodal Cluster.

5.1. Load Balancing Conclusions
After correcting for the penalty imposed due to overallocating memory, we find

that the QUIPS rating consistently provides better performance than the unbalanced code,

regardless of the range of processor capabilities, up to eight processors. If the range of

processor capabilities is sufficiently wide, then all three weighting techniques provide an

improvement over the unbalanced code.

We also have determined that for the two- and four-processor cases, the load

balancing allows us to make full use of the available processors; if load balancing were not

used, we may realize better performance by leaving out the weakest processor. Why

doesn't load balancing with the eight-processor case permit us to make full use of the

103

processors? The answer lies in the last row of Table D-12. Using the weights returned by

the NodeMetric library, ABC12's "fair share" of the problem is a tile two or three

elements wide. The load balancing algorithm is designed to reshift the balance to prevent

any processor from having a tile less than four elements wide. So ABC 12 is still

overtaxed, while ABC03 is not being used to its fullest extent. If this requirement were

removed, or if we were using a larger problem size, then the partition reshifting would be

unnecessary. Each processor would still be responsible for its fair share, and we would

see a performance improvement over the seven-processor case.

We also observe that we have reduced the time needed to make use of the HINT

benchmark, when compared to the initial approach [82]. To build the maps used by the

metricmap functions, just over forty-three hours of processor time was used to build maps

for five intrinsic data types.66 Had we been required to execute the HINT benchmark on

every node, even if only for the double-precision floating point version, then just over

fifty-one hours of processor time would be required.67 Further, when new nodes are

added to the cluster, we are not first required to execute the HINT benchmark on them,

unlike the approach in [82].

5.2. Future Asymmetric Load Balancing Efforts
The situation with comparing seven processors to eight, in which the 200 MHz

Processor does not contribute to a faster solution, as described previously, forces us to

reexamine why we do not permit tiles to be narrower than four elements. We suspect the

66 528.90 min on 200 MHz Pentium; 655.95 min on 333 MHz Pentium II; 628.20 min on 400 MHz
Pentium II; and 770.48 min on 450 MHz Pentium II.
67 172.87 min on 200 MHz Pentium; 277.63 min on each 333 MHz Pentium II; 266.95 min on each
400 MHz Pentium II; and 176.85 min on 450 MHz Pentium II.

104

original reason for this constraint was to prevent the use of so many processors that

interprocessor communication destroyed the performance. So, the real constraint is not a

lower limit on the size of the tiles, but rather an upper limit on the number of processors

that may be used. So long as we are not exceeding this upper limit, then there is no reason

why the weakest processor cannot be responsible for a tile narrower than four elements.

So long as its "fair share" is a tile at least one element wide, there is no reason why the

weakest processor could not contribute to the solution when it is not tasked with more

than its "fair share." For this reason, the lower limit on the width of the tiles could be

removed in the load balanced code.

A Fortran 90 compiler does not have to overallocate memory to permit

asymmetric load balancing. Instead, it can dynamically allocate memory at run-time, after

the partition sizes have been determined. These tests should be run again after being

compiled with a Fortran 90 compiler, to establish the effects of changing compilers, and

then the application should be modified to make use of dynamic allocation. That

accomplished, the tests should be run yet again to ascertain the effect on performance that

asymmetric load balancing with dynamic memory allocation has. Once dynamic memory

allocation is used, the B-class problem can be executed on the 8-processor combinations:

ABC 12 should never be required to allocate more than 20.24 MB for a partition when 8

processors are used to tackle the B-class problem, and this fits inside ABC12's main

memory.

An alternate approach that should be tried is "diffusive load balancing," described

by Corradi, et.al. [17]. In diffusive load balacing, the workload is shifted between

105

neighboring processors if there is a load imbalance between them; gradually, a global

balance is achieved. Using diffusive load balancing, it should be straight-forward to

achieve an asymmetric load balance without weighing the nodes. If the time a processor

spends in an MPI_Wait() call is above some threshold, then diffusive potential is indicated.

After these suggested changes have been implemented and tested, two-dimensional

load balancing also should be attempted, as described in Section A. 1.3.3.

5.3. Development & Future Directions for the AFIT Bimodal Cluster
The author constructed the ABC and has managed it for nearly a year. This thesis,

along with those of other students, has made use of this expanding high performance

computing platform. The ABC should continue to grow to permit research into larger

problems and to accommodate a greater number of researchers. Hand-in-hand with the

ABC's growth is the need for the hiring of a system administrator to manage the cluster.

Even with twelve nodes, being able to effectively serve as a system administrator is

growing beyond the time requirements for full-time graduate students.

Scaling the interconnection network with the cluster may prove challenging, but

the issues involved and solutions are discussed in [77]. The primary considerations are the

latency of an individual message and the channel capacity. The authors of [77] suggest a

tree of switches with Fast Ethernet leaves uplinked to a Gigabit Ethernet router as the best

option considered. While they do not explicitly address the use of very large Fast Ethernet

switches (such as by stacking multiple 24-port switches), we recommend that a tree

structure is more appropriate, since it isolates network traffic on the leaf switches from the

traffic on the other leaf switches (except where the traffic must cross the Gigabit Ethernet

106

link to another leaf switch), and thus should provide superior performance. A network

simulation is needed to provide a quantitative case for a tree of switches versus stacked

switches.

The Linux kernel needs to be replaced or repaired. The bug in the tcp_ack ()

function can be fixed by modifying the kernel's source code and recompiling [76], but the

TCP stack in the 2.2.x kernels has undergone several improvements [18]. This, combined

with Linux 2.2.x's improved performance on systems with more than 16 MB of main

memory [18] suggest upgrading the kernel is the wiser solution.

Finally, some updated development software should be implemented.

MPICH 1.1.2 [9] is available for beta testing now, and it is supposed to fix some errors in

previous versions of MPICH 1.1.x. We also recently learned of the Pentium Compiler

Group [65] which has developed patches (pgcc) to the egcs compiler suite to provide

optimizations particular to Intel processors at the Pentium level and newer. Making use of

pgcc compilers should offer greater performance over our current egcs compilers, as the

egcs compilers are general compilers for any 32-bit processor that implements the Intel

Architecture.

5.4. Closing Thoughts
This thesis effort has not attempted to prove or demonstrate that clusters of PCs

are more effective or more efficient than MPPs, or even that PoPCs are sufficient

replacements for some applications. Instead, it starts with the premises that PoPCs are

already here in numbers, and that they are an inexpensive way to execute high

performance computing applications.

107

From that premise, the issue this thesis addresses is how to make more efficient

use of these clusters. Many of the traditional assumptions about supercomputing

platforms do not hold true with commodity clusters, particularly when we realize that

PoPCs have certain grown potentials that are not possible with the "big iron" machines,

particularly the ability to add the most "powerful" processors to the system as money

become available, rather than limiting growth to the addition of more processors identical

to those already in place.

The experiments that this document records have shown that with proper load

balancing, computational scientists and engineers using PoPCs can efficiently use both the

newest hardware in the system and the oldest, without the older hardware limiting the

system's performance. In so doing, we conclude that the removal of older hardware is

unnecessary when the newer hardware has more than twice the performance. Researchers

are then able to get more use out of their research dollar, and obsolescence of the older

hardware is delayed.

108

Appendix A: Supplemental LU Background Material & Analysis

A.l. Data Partitioning
There are several ways a matrix can be partitioned among processors, though only

the three relevant to this thesis effort are addressed here. They are block checkerboard

partitioning, rowwise block striping, and columnwise block striping. These are two-

dimensional partitioning schemes; however, if the designers choose not to partition the

z axis, as is the case with the LU application68 [61], then two-dimensional partitioning

schemes are suitable.

Figure A-l. Unpartitioned data set.

Detailed discussion on block checkerboard and block striped partitioning follows

and is summarized in Table A-l:

68 See Section 2.3.1, [10], or [101].

109

Table A-l. Features of Checkerboard and Striped Partitioning.

Block Checkerboard Partitioning Block Striped Partitioning
Primary

Characteristic
Decomposes domain

along two axes
Decomposes domain

along one axis
Maximum

Number of
Processors

ö{n) <Xn)

Limitations on
Number of
Processors

Must be non-prime.
Typically, power-of-two

or square.

No restrictions for quantities
less than maximum.

Communication
Overhead

Less overhead for greater
numbers of processors.

Less communication overhead
for small numbers of processors.

Ease of Load
Balancing

Difficult, but not impossible. Easier, but not trivial.

A. 1.1. Checkerboard Partitioning
In block checkerboard partitioning, the application partitions each x-y plane into

smaller square or rectangular blocks (or "tiles") by partitioning the planes along both the

x axis and the v axis [48:152]. The exact method varies from application to application.

Given p processors partitioning an / x j matrix, and two factors, p\ and/?2 such

that px x p2 = p, each plane is partitioned into px x p2 tiles with approximate dimensions

/Pl x j/Pl. These dimensions are approximate because, if i and; are not evenly divisible by

px and/?2, then some rounding may be required. As a specific example, if p is square and

the matrix is an n x n square, then px = p2 = -Jp , and the plane is partitioned into

■yfp x Jp square tiles, each approximately y^ on a side.

110

Figure A-2. Block checkerboard partitioning for eight processors.

As another example, the technique used by LU is to require that/? be a power-of-

two, and then alternately partition the x and y axes into greater powers-of-two, until all

processors are utilized (Figure A-2).

A. 1.2. Striped Partitioning
Block striped partitioning can be considered a special case of block checkerboard

partitioning, in which one of p's factors is 1. Alternately, if checkerboard partitioning is

defined such that a processor is never assigned a complete row or column [48:152], then

striped partitioning is a completely different mapping. Regardless, striped partitioning is a

one-dimensional division of the matrix among the processors. We can either assign each

processor full rows (Figure A-3) or full columns (Figure A-4) [48:151-152].

Ill

Figure A-3. Rowwise block spriped partitioning for eight processors.

From an abstract perspective, there is no fundamental difference between rowwise

and columnwise partitioning; however, there may be performance reasons to select one

over the other. These reasons may include minimizing processor idle time or minimizing

communication overhead - and it may not be possible to do both. Another reason,

particular to this thesis effort, has to do with how the implementation language stores

matrices in memory; in this case, Fortran stores multidimensional arrays in column-major

order [1:10].

A. 1.3. Choosing a Partitioning Scheme
Why might a computational scientist/engineer select checkerboard partitioning

over striping, or vice-versa? The two reasons most commonly cited are limits on the

number of processors that can be used, and the communication overhead associated with

112

each. In addition to these two, another reason relevant to this research is the ease by

which the partitioning can be adjusted.

■■jreg-gg^gc^Tp^

Figure A-4. Columnwise block striped partitioning for eight processors.

A. 1.3.1. Number of Processors to be Utilized
A significant consideration is the number of processors amongst which the matrix

can be divided. For annxn matrix, striped partitioning can make use of 0{n) processors,

whereas checkerboard partitioning can utilize 0{n2) processors. As specific examples,

consider LU's smallest and largest problem sizes. For the W-class problem, n=33, the

problem can be divided among 64 processors using block checkerboard partitioning.69 In

contrast, the C-class problem specifies «=162, which makes the problem 188.3 times

larger than the W-class problem;70 yet with block striping, the application could only make

use of 40 processors.

69 The LU application requires that the minimum dimension on a partition be no less than four [61].
70 ^-«118.3

113

On the other hand, block striped partitioning does not constrain the number of

processors used, short of the maximum. Block checkerboard partitioning schemes, at a

minimum, require a non-prime number of processors. More typically, though, the number

is more constrained (Table A-l). For example, the LU application requires a power-of-

two number of processors; other applications such as SP require a square number of

processors [10:8-9]. They can only make use of eight or nine processors out of the twelve

available on the ABC. Looking forward, the ABC's switch can accommodate up to

twenty-four nodes before we need to stack the switch with another;71 when the ABC does

have twenty-four processors, both LU and SP would only be able to use sixteen.

A.l.3.2. Communication Overhead
Another consideration is the communication pattern. This varies from application

to application, so here the focus is on LU. If we assume a processor can send and receive

at the same time, that network contention is not an issue, and that the time for a message

to propagate through the network is constant, regardless of the sender and receiver, then

the time required to send a message over the network can be expressed as

tcanun=t,+Km (A"1)

where ts is the startup time required to prepare the message, tw is the per-word transfer

time,72 and m is the number of words in the message; since the propagation time is

constant, here ts also includes the propagation time [48:45-48].

In the SSOR code, each tile exchanges data with each of its neighbors every

iteration;73 the typical tile has four neighbors in the block checkerboard case. If each

71 See Section 3.1.

114

x-y plane has n elements on a side, there are p processors, and n is evenly divisible by

4-yfp , then each tile has fa elements on a side. To exchange the values of the border

elements, then, requires sending fa elements four times. An exchange requires the

sending of five eight-byte words for each element [101:2]. Equation (A-l) then becomes

tcmm.BC=*(ts+twm)

5nt ^ (A-2)

yfp

If LU were partitioned using block striping, then each tile has at most two

neighbors. If« is evenly divisible by Ap, then each tile measures nxfp, and exchanging

the values of the border elements requires the transmission of n elements twice, and

equation (A-l) becomes

= 2(ts+5ntw) (A-3)

If tcomm,Bc < tComm,Bs , then block checkerboard partitioning has a lower

communication overhead for LU, and if tcommßC > tcomm,BS , then block striped partitioning

has a lower communication overhead for LU. Algebraic manipulation leads us to

t, > 5nt„
(2\
1-

(A-4)

72 Defined as the inverse of the channel capacity in words per second.
73 See Section 2.3.1.

115

as the determination as to whether block striping has superior communication patterns.

When using the ABC, the interconnection network has a capacity of 100 Mbps before the

messaging overhead (which is represented by ts). From this we can determine that

: = {&*%£
_,„-»sec/ v8Wfs/ Jbytes/
-1U /bit* /byte* /ward

= 6.4X10-'«^ <A-5>

Combining equations (A-4) and (A-5), we have

t. > 3.2n
2

1-
>

msec
(A-6) . IP;

For the one-processor and two-processor cases, equation (A-6) compares t„

against a negative value, which always evaluates to be true. In point-of-fact, though, the

partitioning is identical for block checkerboard and block striping in the one- and two-

processor cases, and we would expect neither to be better. For the four-processor case,

though, ts is compared against zero, which also evaluates to be true. It stands to reason

that in the four-processor case, block striping is superior, since the total number of words

exchanged is the same for each scheme, but the messaging overhead occurs only half as

often.

For greater numbers of processors, the balance point varies as a function of the

messaging overhead, the number of processors, and the size of the problem.

A. 1.3.3. Load Balancing
The remaining consideration, which that played a dominant role in this thesis

effort, is the the ability to manipulate the size of the partitions. For block striping, the

116

sizes can be manipulated by "merely" adjusting the dimension along the partitioned axis

(Figure A-5b). For block checkerboard partitioning, the task is not as straight-forward.

(a) (b)

Figure A-5. Asymmetric load balancing using block striped partitions on the
x-y plane, (a) Unbalanced, (b) Balanced.

One approach is to use block-checkerboard as a first estimate of the load balance,

and then completely abandoning a clearly-defined partitioning scheme, making the tiles

irregular shapes by adding and removing elements until each tile has an appropriate

number of elements (Figure A-6b). The greatest problem here is that the entire CFD

engine would have to be rewritten to accommodate the irregular shapes, both for

computation and communication.

117

(a)

(b) (c)

11111111 irrnc

(d) (e)

Figure A-6. Asymmetric load balancing using block checkerboard partitions on the
x-y plane, (a) Unbalanced, (b) No fixed tile shape, (c) Fixed column width; row
width varies within each column, (d) Variable column width; row width varies

within each column, (e) Variable column width; row width varies globally.

118

The next approach that we might try is to fix the column widths, and within each

column, adjust the row widths to achieve a balance in that column.74 The most obvious

problem is that this does not provide a global load balance. So we might use the

aggregate capabilities of each column to adjust the width of the columns, and then adjust

the row widths within each column, providing a better global load balance. The problem

with both approaches in this paragraph is that they violate an assumption in the LU code,

namely that each tile has at most one neighbor on each edge [61]. Overcoming this

obstacle is not as difficult as rewriting the entire CFD engine, but it in the interest of

incrementally modifying the application so as to improve our ability to isolate errors and

unexpected behavior, we do not wish to make too many changes at once.

The final approach to load balancing a block checkerboard partitioned problem is

to use the aggregate capabilities of each column to adjust the width of the columns, and

then use the aggregate capabilities of each row to adjust the width of the entire rows

instead of within each column. This is only somewhat more challenging than load

balancing a block striped problem, but it does not provide as good of a load balance as is

possible with the block striped partitioning. Nonetheless, if the communication overhead

makes block striped partitioning undesirable, or if the number of processors to be used is

greater than can be used with block striping, then block checkerboard partitioning with

this last load balancing approach is the preferred technique.

74 In this paragraph, the terms "row" and "column" may be reversed - it is more convenient to use these
terms than "dimension A" and "dimension B,"

119

A.2. Finite Difference Method
As might be expected, a system of partial differential equations must be discretized

to be solved on a computer. The method briefly described here is the finite difference

method (FDM). This is only a cursory treatment to aid the reader who is completely

unfamiliar with computational fluid dynamics. Algorithms to solve the system of

equations are not provided. Further, the description here is done in two dimensions for

simplicity; the NPB LU simulated CFD application is a three-dimensional problem. A full

treatment can be found in [7].

Table A-2. Advantages and disadvantages to
higher-order accuracy with the finite difference method.

Advantages Disadvantages
May require a smaller number of grid points to Requires more compute time because there are
obtain a solution of the same accuracy, reducing the more difference quotients to compute.
overall computation time.
Often produces higher-quality solutions for certain Requires more compute time because each
scenarios. difference quotient requires more calculations than

the lower-order difference quotients.
By requiring access to grid points farther away
from the grid point being evaluated, requires more
communication between compute nodes when
updating the boundary conditions between
subdomains (not included in [7]).

[7:128,132,135-137].

In the finite difference method, partial derivatives are replaced with algebraic

difference quotients, or finite differences. Generally, this is based on Taylor's series

expansions. A critical question is the degree of accuracy to be used in the expansion.

Many consider first-order accuracy is insufficient for CFD applications. Second-order

accuracy is considered quite sufficient for most CFD applications, though there are

advantages and disadvantages to going to higher-order accuracy.

120

To consider how much the complexity of the FDM evaluation grows when going

to higher-order accuracy, consider the growth from first-order accuracy to second-order

accuracy in two dimensions. First, the first-order equations:

First-order forward
difference with
respect to x

\dx)i4 Ax
i*.

im

First-order fefax «^-0
rearward difference \?dxf.-■. **' &x
with respect to x

i-W

W

First-order forward
difference with
respect to y

du "i^-"ij

m

^^Ü. ^1/ .*?•

4?

v

First-order forward
difference with
respect to y

\3y),, " Ay

m>.
Figure A-7. First-order finite-difference expressions. [7:130-136]

Second-order accuracy makes use of the four first-order difference quotients and

introduces five second-order difference quotients:

121

Second-order
central difference
with respect to x

Wy 2 Ax
4 -,ä J* ,. w if i+lj

Second border
central second
'difference with

-i A* . At .

respect to x i-li i) i+lj

\m -4 ■.

Second -order (&$\ »Miif-^M
central difference
with respect to y wk,r i*M

Ay

V/
Second -order
central second
difference with
respect toy

V+l
AH

V
Ay

[ij-S

nd-order (_£JL\ -
U

">./" +
U

-LI- ~
U

I-<.^~
U

"<.J-< *±ljn
d difference (d^ji " 4A*Av X

Second
mixe
with respect to x
andy

i+Ij+l

i+Jj-i

Figure A-8. Second-order finite-difference expressions. [7:130-136]

Clearly, increasing the accuracy dramatically increases the computational demands

for a solution. The increased demand is not merely in the extra difference quotients that

most be calculated, but in the increased complexity of the extra equations. The first-order

terms each require two floating point operations, a subtraction and a division. In contrast,

the second-order terms each require between four and seven floating point operations.

122

Extending to three dimensions makes the contrast even more dramatic: only two

terms are added for first-order accurate solutions, as opposed to six additional terms for

second-order accurate solutions.

75 Two first-order terms, and four second-order terms.

123

Appendix B: NAS Parallel Benchmarks - Changes

The original source code is available from [99]. The modified source code is

stored on the ABC in the /home/cbohn/thesis directory, and it is also available

directly from the author (see Vita for contact information).

B.l. diff -r NPB-baseline NPB-modO
Only in NPB-baseline: BT
Only in NPB-baseline: CG
Only in NPB-baseline: EP
Only in NPB-baseline: FT
Only in NPB-baseline: IS
diff -r NPB-baseline/LU/Makefile NPB-modO/LU/Makefile
7c7
< OBJS = lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o neighbors.o \

> OBJS = lu_wrapper.o lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o neighbors.o \
27a28,30
>
> lu_wrapper.o: lu_wrapper.c
> ${CCOMPILE} lu_wrapper.c
diff -r NPB-baseline/LU/init_comm. f NPB-modO/LU/init_comm.f
31c31
< call MPI_INIT(IERROR)

> c call MPI_INIT(IERROR)
diff -r NPB-baseline/LU/lu.f NPB-modO/LU/lu.f
47c47,48
< program applu

> subroutine applu
> c program applu
Only in NPB-modO/LU: lu_wrapper.c
Only in NPB-baseline: MG
Only in NPB-baseline: MPI_dummy
diff -r NPB-baseline/Makefile NPB-modO/Makefile
9,15c9,15
< BT: bt
< bt: header
< cd BT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
<
< SP: sp
< sp: header
< cd SP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)

> #BT: bt
> #bt: header
> # cd BT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
>
> #SP: sp
> #sp: header
> # cd SP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
21,39c21,39
< MG: mg
< mg: header
< cd MG; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
<
< FT: ft
< ft: header

124

< cd FT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
<
< IS: is
< is: header
< cd IS; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
<
< CG: eg
< eg: header
< Cd CG; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
<
< EP: ep
< ep: header
< Cd EP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)

> #MG: mg
> #mg: header
> # cd MG; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
>
> #FT: ft
> #ft: header
> # cd FT; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
>
> #IS: is
> #is: header
> # cd IS; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
>
> #CG: cg
> #cg: header
> # cd CG; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
>
> #EP: ep
> #ep: header
> # cd EP; $(MAKE) NPROCS=$(NPROCS) CLASS=$(CLASS)
59,60c59,e0
< - rm bin/sp.* bin/lu.* bin/mg.* bin/ft.* bin/bt.* bin/is.* bin/ep.* bin/cg.*
<

> # - rm bin/sp.* bin/lu.* bin/mg.* bin/ft.* bin/bt.* bin/is.* bin/ep.* bin/cg.i

> - rm bin/lu.*
Only in NPB-baseline: SP
Only in NPB-baseline/config: NAS.samples
diff -r NPB-baseline/config/make.def NPB-modO/config/make.def
40c40
< FMPI_LIB = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi -lfmpi

> FMPI_LIB = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi
50c50
< FFLAGS = -O

> FFLAGS = -fno-second-underscore -0
Only in NPB-baseline/config: make.def.template
Only in NPB-baseline/config: make.dummy
diff -r NPB-baseline/config/suite.def NPB-modO/config/suite.def
14,22cl4,29
< # The following example builds 1 processor sample sizes of all benchmarks.
< ft s 1
< mg S 1
< sp S 1
< lu S 1
< bt S 1
< is S 1
< ep S 1
< cg S 1

> lu W 1
> lu W 2
> lu W 4
> lu W 8
> lu A 1
> lu A 2
> lu A 4
> lu A 8

125

> lu B 1
> lu B 2
> lu B 4
> lu B 8
> lu C 1
> lu C 2
> lu C 4
> lu C 8
Only in NPB-baseline/config: suite.def.template

126

B.2. diff -r NPB-modO NPB-modla
diff -r NPB-modO/LU/applu.incl NPB-modla/LU/applu.incl
6a7,21
> c
> c MODIFICATIONS
> c 5 Dec 98 — Changed declaration of the buf & bufl arrays
> c to accomodate columnwise block striping
> c -- Necessary since the original declarations were
> c for (5,2*isiz2*isiz3), but this was under the
> c assumption (design) that isiz2.ge.isizl
> c -- This was okay for original block-checkerboard
> c partitioning
> c -- This was okay for rowwise block striping
> c -- This is not a valid assumption for columnwise
> c block striping
> c
> c
> c
140,141cl55,160
< double precision buf(5,2*isiz2*isiz3) ,
< > bufl(5,2*isiz2*isiz3)

> c MODIFICATIONS (modla)>
> c double precision buf(5,2*isiz2*isiz3),
> c > bufl(5,2*isiz2*isiz3)
> double precision buf(5,2*isizl*isiz3),
> > bufl(5,2*isizl*isiz3)
> c </M0DIFICATIONS (modla)>
diff -r NPB-modO/LU/exchange_4.f NPB-modla/LU/exchange_4.f
8a9,23
> c
> c MODIFICATIONS
> c 8 Dec 98 — Changed declaration of the g & h arrays
> c to accomodate columnwise block striping
> c -- Necessary since the original declarations were
> c for (0:isiz2+l,0:isiz3+l), but this was under the
> c assumption (design) that isiz2.ge.isizl
> c -- This was okay for original block-checkerboard
> c partitioning
> c -- This was okay for rowwise block striping
> c -- This is not a valid assumption for columnwise
> c block striping
> c
> c
> c
22,23c37,42
< double precision g(0:isiz2+l,0:isiz3+l) ,
< > h(0:isiz2+l,0:isiz3+l)

> c MODIFICATIONS (modla)>
> c double precision g(0:isiz2+l,0:isiz3+l),
> c > h(0:isiz2+l,0:isiz3+l)
> double precision g(0:isizl+1,0:isiz3+l),
> > h(0:isizl+l,0:isiz3+l)
> c </MODIFICATIONS (modla)>
diff -r NPB-modO/LU/exchange_5-f NPB-modla/LU/exchange_5.f
8a9,27
> c
> c MODIFICATIONS
> c 8 Dec 98 — Changed declaration of the g array
> c to accomodate columnwise block striping
> c -- Necessary since the original declarations were
> c for (0:isiz2+l,0:isiz3+l), but this was under the
> c assumption (design) that isiz2.ge.isizl
> c -- This was okay for original block-checkerboard
> c partitioning
> c -- This was okay for rowwise block striping
> c -- This is not a valid assumption for columnwise
> c block striping
> c -- Actually, I doubt this will have any impact, since
> c this is north-south comm, and with columnwise block

127

> c striping, there is but one row, but it is necessary
> c to provide a good interface with pintgr()
> c
> c
> c
22c41,44
< double precision g(0 : isiz2+l,0:isiz3 + l)

> c MODIFICATIONS (modla)>
> c double precision g(0:isiz2+l,0:isiz3+l)
> double precision g(0:isizl+l,0:isiz3+l)
> c </MODIFICATIONS (modla)>
diff -r NPB-modO/LU/exchange_6.f NPB-modla/LU/exchange_6.f
8a9,23
> c
> c MODIFICATIONS
> c 8 Dec 98 -- Changed declaration of the g array
> c to accomodate columnwise block striping
> c -- Necessary since the original declarations were
> c for (0:isiz2+l,0:isiz3+l), but this was under the
> c assumption (design) that isiz2.ge.isizl
> c — This was okay for original block-checkerboard
> c partitioning
> c — This was okay for rowwise block striping
> c -- This is not a valid assumption for columnwise
> c block striping
> c
> c
> c
22c37,40
< double precision g(0:isiz2+l,0:isiz3+l)

> c MODIFICATIONS (modla)>
> c double precision g(0:isiz2+l,0:isiz3+l)
> double precision g(0:isizl+1,0:isiz3+l)
> c </MODIFICATIONS (modla)>
diff -r NPB-modO/LU/pintgr.f NPB-modla/LU/pintgr.f
8a9,23
> c
> c MODIFICATIONS
> c 8 Dec 98 -- Changed declaration of the phil & phi2 arrays
> c to accomodate columnwise block striping
> c — Necessary since the original declarations were
> c for (0:isiz2+l,0:isiz3+l), but this was under the
> c assumption (design) that isiz2.ge.isizl
> c -- This was okay for original block-checkerboard
> c partitioning
> c — This was okay for rowwise block striping
> c — This is not a valid assumption for columnwise
> c block striping
> c
> c
> c
24,25c39,44
< double precision phil (0 :isiz2+l,0:isiz3+l) ,
< > phi2(0:isiz2+l,0:isiz3+l)

> c MODIFICATIONS (modla)>
> c double precision phil(0:isiz2+l,0:isiz3+l),
> C > phi2(0:isiz2+l,0:isiz3+l)
> double precision phil(0:isizl+1,0:isiz3+l),
> > phi2(0:isizl+l,0:isiz3+l)
> c </MODIFICATIONS (modla)>
59c78,81
< do i = 0,isiz2+l

> c <MODIFICATIONS>
> c do i = 0,isiz2+l
> do i = 0,isizl+1
> c </MODIFICATIONS>
126cl48,151
< do i = 0,isiz2+l

128

> c <MODIFICATIONS>
> c do i = 0,isiz2+l
> do i = 0,isizl+l
> c </MODIFICATIONS>
205c230,233
< do i = 0,isiz2+l

> c <MODIFICATIONS>
> c do i = 0,isiz2+l
> do i = 0,isizl+l
> c </MODIFICATIONS>
diff -r NPB-modO/LU/proc_grid.f NPB-modla/LU/proc_grid.f
8a9,27
> c
> c MODIFICATIONS
> c 2 Dec 98 — Changed block-checkerboard partitioning to
> c rowwise block striping
> c — This may affect performance
> c — This will require fewer changes than would be
> c demanded if I were to keep block-checkerboard and
> c tried to work with different-sized blocks
> c -- All this code assumes at most one neighbor node in
> c each direction -- I can continue to assure that with
> c block-striping, so I don't have to modify the code
> c to accept multiple neighbors
> c 4 Dec 98 -- Changed rowwise block striping to
> c columnwise block striping
> c — This should improve performance over rowwise block
> c striping (locality)
> c
> c
> c
20,21c39,44
< c set up a two-d grid for processors: column-major ordering of unknowns
< c NOTE: assumes a power-of-two number of processors

> cXXXset up a two-d grid for processors: column-major ordering of unknownsXXXX
> cXXXNOTE: assumes a power-of-two number of processorsXXXXXXXXXXXXXXXXXXXXXXXX
> c
> c set up a one-d grid (a row, if you will) for processors
> c NOTE: no longer assumes a power-of-two number of processors, but
> c I'm not going to change this official requirement
25,27c48,54
< xdim = 2**(ndim/2)
< if (mod(ndim,2).eq.l) xdim = xdim + xdim
< ydim = num/xdim

> c MODIFICATIONS (modla)>
> c xdim = 2**(ndim/2)
> c if (mod(ndim,2).eq.1) xdim = xdim + xdim
> c ydim = num/xdim
> c
> c row = mod(id,xdim) + 1
> c col = id/xdim + 1
29,30c56,60
< row = mod(id,xdim) + 1
< col = id/xdim + 1

> xdim = 1
> ydim = num
> row = 1
> col = id + 1
> c </MODIFICATIONS (modla)>
diff -r NPB-modO/sys/setparams.c NPB-modla/sys/setparams.c
7c7,13
< * the number of nodes and class for which a benchmark is being built.

> * the number of nodes and class for which a benchmark is being built.
>
> * MODIFICATIONS
> * 2 Dec 98 — Changed write_lu_info() to accomodate the change from

129

> * block-checkerboard partitioning to rowwise block striping
> * 4 Dec 98 — Changed write_lu_info () to accomodate the change from
> * rowwise block striping to columnwise block striping
448a455
> /* MODIFIED 2 Dec 98 by cb */
466,468c473,478
< xdiv = ydiv = ilog2(nprocs)/2;
< if (xdiv+ydiv != ilog2(nprocs)) xdiv += 1;
< xdiv = ipow2(xdiv); ydiv = ipow2(ydiv);

> /* MODIFICATIONS (modla)> */
> /* xdiv = ydiv = ilog2(nprocs)12; */
> /* if (xdiv+ydiv != ilog2(nprocs)) xdiv += 1; */
> /* xdiv = ipow2(xdiv); ydiv = ipow2(ydiv); */
> xdiv = 1; ydiv = nprocs;
> /* </MODIFICATIONS (modla)> */

130

B.3. diff -r NPB-modla NPB-mod4.2
diff -r NPB-modla/LU/Makefile NPB-mod4.2/LU/Makefile
7,llc7,12
< OBJS = lu_wrapper.o lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o neighbors.o
\
< nodedim.o subdomain.o setcoeff.o sethyper.o setbv.o exact.o setiv.o \
< erhs.o ssor.o exchange_l.o exchange_3.o exchange_4.o exchange_5.o \
< exchange_6.o rhs.o 12norm.o jacld.o blts.o jacu.o buts.o error.o \
< pintgr.o verify.o ${COMMON}/print_results.o ${COMMON}/timers.o

> OBJS = lu_wrapper.o lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o \
> neighbors.o nodedim.o subdomain.o setcoeff.o sethyper.o setbv.o \
> exact.o setiv.o erhs.o ssor.o exchange_l.o exchange_3.o exchange_4.o \
> exchange_5.o exchange_6.o rhs.o 12norm.o jacld.o blts.o jacu.o buts.o \
> error.o pintgr.o verify.o ${COMMON}/print_results.o ${COMMON}/timers.o \
> get_name.o weighnode.o metric.o metricmap.o
31a33,35
> get_name.o: get_name.c
> ${CCOMPILE} get_name.c
>
62c66,67
< subdomain.o: subdomain.f applu.incl npbparams.h mpinpb.h

> subdomain.o: subdomain.f applu.incl npbparams.h mpinpb.h \
> ../metric/weighnode.h ../metric/metric.h ../metric/metricmap.h
diff -r NPB-modla/LU/blts.f NPB-mod4.2/LU/blts.f
13al4,20
> c
> c MODIFICATIONS
> c 21 Dec 98 -- Added "upshot" instrumentation
> c 22 Dec 98 -- Thinned out "upshot" instrumentation
> c
> c
> c
54a62,64
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(12,0,"Start Exchange")
> c </MODIFICATIONS (mod2.x)>
55a66,68
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT{13,0,"End Exchange")
> c </MODIFICATIONS (mod2.x)>
255a269,271
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(12,0,"Start Exchange")
> c </MODIFICATIONS (mod2.x)>
256a273,275
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(13,0,"End Exchange")
> c </MODIFICATIONS (mod2.x)>
diff -r NPB-modla/LU/buts.f NPB-mod4.2/LU/buts.f
13al4,20
> c
> c MODIFICATIONS
> c 21 Dec 98 -- Added "upshot" instrumentation
> c 22 Dec 98 -- Thinned out "upshot" instrumentation
> c
> c
> c 7
55a63,65
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(12,0,"Start Exchange")
> c </MODIFICATIONS (mod2.x)>
56a67,69
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(13,0,"End Exchange")
> c </MODIFICATIONS (mod2.x)>
255a269,271
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(12,0,"Start Exchange")
> c </MODIFICATIONS (mod2.x)>

131

256a273,275
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(13,0,"End Exchange")
> c </MODIFICATIONS (mod2.x)>
Only in NPB-mod4.2/LU: get_name.c
diff -r NPB-modla/LU/rhs.f NPB-mod4.2/LU/rhs.f
8a9,15
> c
> C MODIFICATIONS
> c 21 Dec 98 -- Added "upshot" instrumentation
> c 22 Dec 98 -- Thinned out "upshot" instrumentation
> c
> c
> c
60a68,70
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(12,0,"Start Exchange")
> c </MODIFICATIONS (mod2.x)>
61a72,74
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(13,0,"End Exchange")
> c </MODIFICATIONS (mod2.x)>
215a229,231
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(12,0,"Start Exchange")
> c </MODIFICATIONS (mod2.x)>
216a233,235
> c MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(13,0,"End Exchange")
> c </MODIFICATIONS (mod2.x)>
diff -r NPB-modla/LU/ssor.f NPB-mod4.2/LU/ssor.f
7a8,20

MODIFICATIONS
11 Dec 98 -- Added some instrumentation to display underlying

information about each node
21 Dec 98 -- Refined instrumentation to display underlying

information about each node
-- Added "upshot" instrumentation

98 -- Thinned out "upshot" instrumentation
98 -- Moved "print" instrumentation to subdomain()

4 Jan 99 — Removed instrumentation

22
23

Dec
Dec

> c—
29a43, 48
> c MODIFICATIONS (mod3.x)>
> cc MODIFICATIONS (mod2.x)>
> c character*32 p_name
> c integer n_len
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod3.x)>
59a79,105
> c MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>

call MPE_INIT_LOG
if (id.eq.O) then

call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE_

call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE_
call MPE_DESCRIBE.
call MPE_DESCRIBE.
call MPE_DESCRIBE

> c
> c
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc
> cc

STATE(1,2,"SSOR","2x2")
STATE(3,4,"Lower Triangle","dllines3")
STATE(5,6,"Upper Triangle","drlines3")
.STATE(8,9, "L2-Norm", "dimple3")
STATE(10,11,"SS Residuals","vlines3")
.STATE (12,13, "Exchange", "black")
STATE(14,15,"Synchronize","boxes")

.STATE (1,2, "SSOR", "blue")

.STATE (3, 4, "Lower Triangle", "red")
STATE(5,6,"Upper Triangle","green")
STATE(8,9,"L2-Norm","yellow")
STATE(10,11,"SS Residuals","pink")
STATE(12,13,"Exchange","purple")
STATE(14,15,"Synchronize","orange")

132

cc
c
c
c
c
cc

call MPE_DESCRIBE_STATE(3,4,"Lower Triangle","black")
call MPE_DESCRIBE_STATE(5,6,"Upper Triangle","white")
call MPE_DESCRIBE_STATE(10,11,"SS Residuals","gray")

endif
0,"Start RHS") call MPE_LOG_EVENT(10

> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
60al07,lll
> c MODIFICATIONS (mod4.x)>
> CC <MODIFICATIONS (mod2.x)>
> cc call MPE_LOG_EVENT(11,0,"End RHS")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
64all6,120
> c MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> cc call MPE_LOG_EVENT(8,0,"Start L2Norm")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
67al24,128
> c <MODIFICATIONS (mod4.x)>
> cc <MODIFICATIONS (mod2.x)>
> cc call MPE_LOG_EVENT(9,0,"End L2Norm")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
76cl37,142

> c MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(14,0,
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
77al44,148
> c <MODIFICATIONS (mod4.x)>
> CC MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(15,0,
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
83al55,159

'Start Barrier")

"End Barrier"

c MODIFICATIONS (mod4.x)>
cc MODIFICATIONS (mod2.x)>
cc call MPE_LOG_EVENT(1,0,"Start SSOR")
cc </MODIFICATIONS (mod2.x)>
c </MODIFICATIONS (mod4.x)>

115al92,196
> c MODIFICATIONS (mod4.x)>
> cc <MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(3,0,"Start LT")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
133c214,224
<

c MODIFICATIONS (mod4.x)>
cc MODIFICATIONS (mod2.x)>
c call MPE_LOG_EVENT(4,0,"End LT")
cc </MODIFICATIONS (mod2.x)>
c </MODIFICATIONS (mod4.x)>

c <MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(5,0,"Start UT")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
150a242,246
> c MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(6,0,"End UT")
> cc </MODIFICATIONS (mod2.x)>

133

> c </MODIFICATIONS. (mod4.x)>
170a267,271
> c <MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> cc call MPE_LOG_EVENT(8,0,"Start L2Norm")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
173a275,279
> c MODIFICATIONS (mod4.x)>
> cc <MODIFICATIONS (mod2.x)>
> cc call MPE_LOG_EVENT(9,0,"End L2Norm")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
183a290,294
> c MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(10,0,"Start RHS")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
184a296,300
> c <MODIFICATIONS (mod4.x)>
> cc <MODIFICATIONS (mod2.x)>
> c call MPE_LOG_EVENT(11,0,"End RHS")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
190a307,311
> c MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> cc call MPE_LOG_EVENT(8,0,"Start L2Norm")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
193a315,319
> c <MODIFICATIONS (mod4.x)>
> cc <MODIFICATIONS (mod2.x)>
> cc call MPE_LOG_EVENT(9,0,"End L2Norm")
> CC </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
214a341,345
> c <MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod2.x)>
> CC call MPE_LOG_EVENT(2,0,"End SSOR")
> cc </MODIFICATIONS (mod2.x)>
> c </MODIFICATIONS (mod4.x)>
217a349,370
> c MODIFICATIONS (mod4.x)>
> cc MODIFICATIONS (mod3.x)>
> ccc <MODIFICATIONS (mod2.x)>

c
c
cc
cc
cc
cc
cc
ccc

cal 1 MPE_FINISH_LOG (" LU ")

call get_name(p_name,n_len)
print 2700,id,p_name(l:n_len)
print 2701,id,nx,ny,nz
print 2704,id,ipt,ipt+nx-1,jpt,jpt+ny-1,0,nz-l
print 2702,id,north,south,west,east
print 2703,id,ist,iend,jst,jend

cc 2700 format ('Process',i3,' executing on ',A)
cc 2701 format ('Process',i3,' dimensions: nx=',i3,' ny=',i3,'
cc 2702 format ('Process',i3,' neighbors: north=',i3,' south='
cc > ' west=',i3,' east=',i3)
ccc 2703 format ('Process',i3,' position:
ccc > ' jst=',i3,' jend=',i3)
cc 2704 format ('Process',i3,' position: ipt=',i3.

nz=
, i3.

,13)

ist=',i3,' iend=',i3,

1 ,i3,
kpt=•,i3, ,i3) cc > ' jpt=',i3,' . . ' ,i3,

ccc </MODIFICATIONS (mod2.x)>
cc </MODIFICATIONS (mod3.x)>
c </MODIFICATIONS (mod4.x)>

diff -r NPB-modla/LU/subdomain.f NPB-mod4.2/LU/subdomain.f
8a9,30
> c
> c
> c
> c

MODIFICATIONS
23 Dec 98 -- Moved "print" instrumentation from ssor()

-- Interfaced with weighnode{)

134

> c
> c 24 Dec 98
> c
> c
> c
> c
> c
> c
> c
> c
> c
> c
> c
> c
> c 4 Jan 99
> c

Adjusted partitioning scheme, instrumenting as I go
Fleshed-out the partition refinement code (yesterday,
I left it as stubs to abort if the sum of the subdomains
was not equal to the domain itself, or if any partition
was smaller than four rows/columns thick)
-- Two ways to refine partition:

-- Steal from poor, give to rich
— If there's extra work to be done, give it to the

strong-muscly-types; if there's too much work,
give the 90-pound-weaklings a break

-- Steal from rich, give to poor
-- Avoid overcompensating
-- Won't induce partition-too-small problem like

the first option would
Removed instrumentation

> c-

17a40,54
> c MODIFICATIONS (mod3.x)>

Function declaration
double precision weighnode

Variable declaration
character*32 p_name
integer n_len,loop,sum,itemp
integer iargl,iarg2,iarg3,iarg4
double precision weight,farg2,temp
double precision glblw8(0:nnodes_compiled-l),ttlw8

get it? glblw8 --> global w8 --> global weight
boy, I'm too funny!

> integer isiz0t,nt(0:nnodes_compiled-l),tpt(0:nnodes_compiled-l)
> logical sorted
> integer lo_end,hi_end,pointer(0:nnodes_compiled-l)
> c </MODIFICATIONS (mod3.x)>
26a64,66
> c MODIFICATIONS (mod3.x)>
> c Leave the original calculations there for compairson purposes
> c </MODIFICATIONS (mod3.x)>
55a96,232
> c MODIFICATIONS (mod3.x)>
> c MODIFICATIONS (mod4.x)>
> c call get_name(p_name,n_len)
> c print 3600,id,p_name(1:n_len)
> c print 3601,id,north,south,west,east

print 3602,id,nx,ny,nz
print 3 603,id,ipt,ipt+nx-1,jpt,jpt+ny-1,0,nz-l

> c
>
> c
>
>
>
>
>
> c
> c

> c
> c
> c
> c
> c
> c
> c
> c
> c
> c
>
> c
> c weigh each node and partition grid appropriately
> c
> isizOt = isizOl

3600 format ('Process',i3,
3 601 format ('Process',i3,

> ,i3, ' west=',i3,
3 602 format ('Process',i3,

> ' nz=',i3)
3 603 format ('Process',i3,

> ' jpt=',i3, '
</MODIFICATIONS (mod4.x)>

' executing on ',A)
' original neighbors: north=',i3,' south=
' east= ' ,i3)
' original dimensions: nx=',i3,' ny=',i3,

' original position: ipt=',i3,' ..',i3,
,i3,■ kpt=',i3, ' . . ■ ,i3)

> c iargl = 0
> c farg2 =1.0
> c weight = weighnode(iargl farg2)
> c iargl = 1
> c iarg2 = 0
> c weight = weighnode(iargl iarg2)
> c iargl = 1
> c iarg2 = 1
> c iarg3 = 4
> c
>
>

weight = weighnode(iargl
iargl = 2
iarg2 =22

iarg2,iarg3)

Programmer-specified
Programmer-specified
Programmer-specified
/proc/cpuinfo
/proc/cpuinfo
/proc/cpuinfo
/proc/cpuinfo converted
/proc/cpuinfo converted
/proc/cpuinfo converted
/proc/cpuinfo converted

calc_pi
calc_pi

135

iarg3 = 0
weight = weighriode(iargl,iarg2,iarg3)

c iargl = 2
c iarg2 =22
c iarg3 = 1
c iarg4 = 4
c weight = weighnode(iargl,iarg2,iarg3 , iarg4)
c MODIFICATIONS (mod4.x)>
c print 3604,id,weight,p_name(l:n_len)
c 3 604 format ('Process', i3 , ' reports weight=',f14.2,
c > ' while executing on ',A)
c </MODIFICATIONS (mod4.x)>

calc_pi
calc_pi
calc_pi
calc_pi
calc_pi
calc_pi
calc_pi

converted
converted
converted
converted
converted

call MPI_ALLGATHER(weight,1,MPI_DOOBLE_PRECISION,
> glblw8,1,MPI_DOUBLE_PRECISION,
> MPI_COMM_WORLD, IERROR)

ttlw8 =0.0
do 3651 loop=0,nnodes_compiled-l

ttlw8 = ttlw8 + glblw8(loop)
3 651 continue

sum = 0
do 3 652 loop=0,nnodes_compiled-l

temp = glblw8(loop)*isiz0t
nt(loop) = temp/ttlw8
if (mod(temp,ttlw8)/ttlw8.ge.0.5)

nt(loop) = nt(loop)+l
endif
sum = sum+nt(loop)
pointer(loop) = loop

3 652 continue

then

! common subexpression
! nt is int, so truncated

! correct rounding error

! to check the math later
! initialize pointers

c bubblesort may not be the most scalable sort in the world, but it's
c quick'n'easy to code, and we're not exactly dealing with a large number
c of processors here -- the overhead of something like quicksort may be even
c worse for our small number of processors
c to give credit where it's due, this is from D.M. Etter, /Structured
c Fortran 77 for Engineers and Scientists/. Menlo Park CA: The
c Benjamin/Cummings Publishing Company, 1987, pl93, with some modifications
c (variable names (big deal) and the use of pseudopointers)

sorted = .false.
3 655 if (.not.sorted) then

sorted = .true,
do 3656 loop=0,nnodes_compiled-2

if (nt(pointer(loop)).gt.nt(pointer(loop+1))) then
itemp = pointer(loop)
pointer(loop) = pointer(loop+1)
pointer(loop+1) = itemp
sorted = .false,

endif
3656 continue

go to 3655
endif
lo_end = 0
hi_end = nnodes_compiled-l

steal from the poor
give to the rich

if
3657

(sum.ne.isizOt) then
if (sum.gt.isizOt) then

nuts
ease the lowend's load

nt(pointer(lo_end)) = nt(pointer(lo_end))-1
> lo_end = lo_end+l
> sum = sum-1
> go to 3 657
> endif
> 3658 if (sum.lt.isizOt) then
> nt(pointer(hi_end))
> hi end = hi end-1
> sum = sum+1
> go to 3658
> endif
> endif
>

! share the easement

! make sure we're finished

nt(pointer(hi_end)
more work for highend
)+l
share the extra effort

! make sure we're done

136

> do 3 659 loop=0,nnodes_compiled-2
> if (nt(pointer)loop)).It.4) then ! nuts
> itemp = 4-nt(pointer(loop))
> nt(pointer(loop)) = nt(pointer(loop))+itemp
> nt(pointer(loop+1)) = nt(pointer(loop+1))-itemp
> endif
> 3 659 continue
> if (nt(pointer(nnodes_compiled-l)).It.4) then ! gosh darn it
> endif ! do nothing ... it'll get caught below
>
> tpt(O) = 0
> do 3 654 loop=l,nnodes_compiled-l
> tpt(loop) = tpt(loop-l)+nt(loop-l)
> 3 654 continue
>
> c </MODIFICATIONS (mod3.x)>
> c MODIFICATIONS (mod3 . 2) >
> ny = nt(id)
> jpt = tpt(id)
>
> c </MODIFICATIONS (mod3.2)>
> c MODIFICATIONS (mod4.x)>
> c MODIFICATIONS (mod3.x)>
> c print 3 613,id,nx,ny,nz
> c print 3614,id,ipt,ipt+nx-1,jpt,jpt+ny-1,0,nz-l
> c 3613 format ('Process',i3,' new dimensions: nx=',i3,' ny=',i3,
> c > ' nz=',i3)
> c 3 614 format ('Process',i3, ' new position: ipt=',i3,' ..',i3,
> c > ' jpt=',i3,' ..',i3,' kpt=',i3,' ..',i3)
> c
> c </MODIFICATIONS (mod3.x)>
> c </MODIFICATIONS (mod4.x)>
diff -r NPB-modla/Makefile NPB-mod4.2/Makefile
18al9,20
> cd metric; make all; make HINT BINDIR=. ./bin
> cp metric/*.o LU;
55a58
> - rm -rf bin/hint
60a64
> - rm -f metric/hint/core metric/hint/*.o metric/hint/*-
diff -r NPB-modla/config/make.def NPB-mod4.2/config/make.def
40c40
< FMPIJLIB = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi

> FMPI_LIB = -L/usr/mpich/lib/LINUX/ch_p4 -lmpe -lpmpi -lmpi
87c87
< CMPI_LIB = -L/usr/mpich/lib/LINUX/ch_p4 -lmpi

> CMPI_LIB = -L/usr/mpich/lib/LINUX/ch_p4 -lmpe -lpmpi -lmpi
Only in NPB-mod4.2: metric
diff -r NPB-modla/sys/setparams.c NPB-mod4.2/sys/setparams.c
13al4,18
> * 24 Dec 98 -- Changed write_lu_info() to allocate the entire problem
> * size for each processor -- I know this is a waste of (virtual)
> * memory, but without dynamic memory allocation, it's the only
> * way I can be assured I'11 have enough memory for a non-
> * fixed partitioning
455a461,462
> /* MODIFIED 4 Dec 98 by cb */
> /* MODIFIED 24 Dec 98 by cb */
479,480c486,491
< isizl = problem_size/xdiv; if (isizl*xdiv < problem_size) isizl++;
< isiz2 = problem_size/ydiv; if (isiz2*ydiv < problem_size) isiz2++;

> /* MODIFICATIONS (mod3.x)> */
> /* isizl = problem_size/xdiv; if (isizl*xdiv < problem_size) isizl++; */
> /* isiz2 = problem_size/ydiv; if (isiz2*ydiv < problem_size) isiz2++; */
> isizl = problem_size;
> isiz2 = problem_size;
> /* </MODIFICATIONS (mod3.x)> */

137

B.4. diff -r NPB-mod4.2 NPB-mod4.3
diff -r NPB-mod4.2/LU/proc_grid.f NPB-mod4.3/LU/proc_grid.f
45a46,48
> c 22 Jan 99 — yes, I am. I want to run this thing on all processors
> c on the system, and block striping allows me to do that
> c
diff -r NPB-mod4.2/config/suite.def NPB-mod4.3/config/suite.def
14,29cl4,22
< lu W 1
< lu W 2
< lu W 4
< lu W 8
< lu A 1
< lu A 2
< lu A 4
< lu A 8
< lu B 1
< lu B 2
< lu B 4
< lu B 8
< lu C 1
< lu C 2
< lu C 4
< lu C 8

> lu A 10
> lu A 11
> lu A 12
> lu B 10
> lu B 11
> lu B 12
> lu C 10
> lu C 11
> lu C 12
diff -r NPB- -mod4.2/sys/setparams.c NPB-mod4.3/sys/setparams.c
18al9
> * 22 Jan 99 -- Removed power-of-two requirement from LU
218c219,221
< case LU

> /* MODIFICATIONS (x.3)> */
> /* case LU: */
> /* </MODIFICATIONS (x.3)> */
226a230,232
> /* MODIFICATIONS (x.3)> */
> case LU:
> /* </MODIFICATIONS (x.3)> */

138

B.5. MPI Wrappers

B.5.1. lu_wrapper.c
#include "mpi.h"

extern void applu_();

int main(int arge, char *argv[]) {
MPI_Init(&argc,&argv);
applu_();
return 0;

}

B.5.2. get_name.c
#include "mpi.h"

void get_name_(char *procname,int *namelen) {
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Get_processor_name(procname,namelen);

}

139

Appendix C: NodeMetric Source Code

This source code is stored on the ABC in the /home/cbohn/thesis

directory, and it is also available directly from the author (see Vita for contact

information).

C.l. weighnode

C.l.l. weighnode.h

* *
* PROJECT: Asymmetric Load Balancing on a Heterogeneous *
* Cluster of PCs *
* AFIT/GE/ENG/99M-02 *
* *
* PACKAGE: NodeMetric *
* 0.2 *
* *
* FILE: weighnode.h *
* 0.1 *
* Single interface for a program to assess the relative *
* processing power (computational & other) of a compute *
* node *
* *
* AUTHOR: Capt Christopher A. Bohn *
* *
* HISTORY: 26 Nov 98 -- Version a.l begun *
* 27 Nov 98 — a.l complete *
* — Version a.2 begun *
* — a.2 complete *
* -- Version a.3 begun *
* -- a.3 complete *
* 28 Nov 98 -- Version a.4 begun *
* -- a.4 complete *
* -- Version a.5 begun *
* 29 Nov 98 — a.5 (C version) complete — FORTRAN versions *
* abandoned *
* -- Version a.5.1 begun *
* — a.5.1 (FORTRAN versions) complete *
* — weighnode.h Version 0.1 *
* — NodeMetric Version 0.1 *
* 11 Dec 98 -- NodeMetric 0.1.1 *
* 31 Dec 98 — NodeMetric 0.1.2 *
* 1 Jan 99 -- NodeMetric 0.2 * '
* *
•A**/

double weighnode (int*, ...);
double weighnode_ (int*, ...);
double weighnode (int*, . ..);

/* weighnode */
/••••A***

140

Uses parameters (all pass-by-reference) to determine how a
compute node should be evaluated. Interfaces with metric.c &
metricmap.c to accomplish the actual measurement. Returns weight, or
returns 0.0 in case of error.

Parameters are:
Parameter 1 -- Metric

0 -- Programmer-specified
-- seemingly pointless option, but I can imagine a couple

instances in which the application programmer might
want this option

Parameter 2 — weight to return to the application (double)
Parameters 3 & 4 — ignored (optional)

1 — Parse /proc/cpuinfo
-- only works on Linux systems
-- current implementation only parses in bogomips
-- current implementation assumes uniprocessor
Parameter 2 -- Return original weight or attempt to unskew?

0 -- original weight
1 -- convert weight

Parameter 3 — ignored (optional) if original weight is
desired

-- if weight is to be converted, then
0 — convert for 16-bit integer operations
1 -- convert for 32-bit integer operations
2 -- convert for 64-bit integer operations
3 -- convert for 32-bit floating point operations
4 -- convert for 64-bit floating point operations

Parameter 4 -- ignored (optional)
2 -- Determine Mflops performance by calculating Pi

Parameter 2 -- indicate level of precision
-- current valid values are 16-28

-- less than 16 and time frame is too small
to measure

-- more than 28 and the operations count
overflows

-- personally, I recommend 22, maybe 23 to get
the steady-state Mflops reading in minimal
time

Parameter 3 — Return original weight or attempt to unskew?
0 -- original weight
1 -- convert weight

Parameter 4 — ignored (optional) if original weight is
desired

-- if weight is to be converted, then
0 -- convert for 16-bit integer operations
1 -- convert for 32-bit integer operations
2 -- convert for 64-bit integer operations
3 -- convert for 32-bit floating point operations
4 -- convert for 64-bit floating point operations

3 -- Determine QUIPS performance by using HINT benchmark
Parameter 2 -- Specify nature of operations

0 -- convert for 16-bit integer operations
1 -- convert for 32-bit integer operations
2 -- convert for 64-bit integer operations
3 -- convert for 32-bit floating point operations
4 -- convert for 64-bit floating point operations

Parameters 3 & 4 — ignored (optional)

141

C.1.2. weighnode.c
#include <stdarg.h>
#include "metric.h"
#include "metricmap.h"

/a***

* *
* PROJECT: Asymmetric Load Balancing on a Heterogeneous *
* Cluster of PCs *
* AFIT/ENG/GE99M-02 *
* *

* PACKAGE: NodeMetric *
* 0.2 *
* *

* FILE: weighnode.c *
* 0.1 *
* Single interface for a program to assess the relative *
* processing power (computational & other) of a compute *
* node *
* *

* AUTHOR: Capt Christopher A. Bohn *
* *
* HISTORY: 26 Nov 98 -- Version a.l begun *
* -- Objective: Develop interface for *
* weighnode, capable of being called from *
* FORTRAN transparently, as well *
* 27 Nov 98 -- a.l complete *
* -- Version a.2 begun *
* -- Objective: Correctly interpret variable *
* arguments (here's hoping that the man *
* page and about 1 printed page's worth of *
* a textbook (Kelley & Pohl, A Book on C, *
* Benjamin Cummings, 1990, pp462-463) is *
* sufficient) *
* -- a.2 complete *
* -- Version a.3 begun *
* — Objective: Implement the FORTRAN versions *
* (well, they're written in C, but they *
* have trailing underscores) that simply *
* call the C version *
* — a.3 complete *
* 28 Nov 98 -- Version a.4 begun *
* -- Objective: Add capability for the *
* application programmer to specify the *
* weight that weighnode() will return -- *
* I know this seems unnecessary, but a) I *
* have noticed that programmers tend to *
* find uses for features the original *
* programmer never though of; b) I can , *
* think of a couple uses for such an *
* option (suppose the app prog'r wants to *
* use a b/m I'm not providing, or wants to *
* specify identical weights for all nodes, *
* and (s)he doesn't want to muck with the *
* code ... now the app prog'r only has to *
* change the weighnode() line ... no other *
* lines need be affected, and none of this *
* ugly commented-out line business; and *
* c) it's cheap ... these comments take up *
* more space in the source code than the *
* actual code will! *
* -- a.4 complete *
* -- Version a.5 begun *
* -- Objective: Let's code this puppy! *
* 29 Nov 98 — a.5 (C version) complete -- FORTRAN versions *
* abandoned, as I realized one of my *
* assumptions was not-so-good *
* -- I had assumed the it would be trivial for *
* weighnode_() & weighnode () to call *
* weighnode(), and then I could keep code *
* maintenance simpler by only modifying *

142

* weighnode() *
* — Turns out the FORTRAN versions would *
* have to do a heckuva lot of decoding to *
* correctly call the C version (due to *
* variable arguments), and this decoding *
* would also have to be maintained *
* -- Version a.5.1 begun *
* -- Objective: Copy the code from the C *
* version into the FORTRAN version *
* -- a.5.1 complete *
* — weighnode.c Version 0.1 *
* -- NodeMetric Version 0.1 *
* 11 Dec 98 -- NodeMetric 0.1.1 *
* 31 Dec 98 -- NodeMetric 0.1.2 *
* 1 Jan 99 -- NodeMetric 0.2 *
* *

double weighnode (int *yardstick, ...) {

Uses parameters (all pass-by-reference) to determine how a
compute node should be evaluated. Interfaces with metric.c &
metricmap.c to accomplish the actual measurement. Returns weight, or
returns 0.0 in case of error.

Parameters are:
Parameter 1 -- Metric

0 -- Programmer-specified
-- seemingly pointless option, but I can imagine a couple

instances in which the application programmer might
want this option

Parameter 2 — weight to return to the application (double)
Parameters 3 & 4 -- ignored (optional)

1 -- Parse /proc/cpuinfo
' -- only works on Linux systems

-- current implementation only parses in bogomips
-- current implementation assumes uniprocessor
Parameter 2 -- Return original weight or attempt to unskew?

0 -- original weight
1 -- convert weight

Parameter 3 — ignored (optional) if original weight is
desired

-- if weight is to be converted, then
0 -- convert for 16-bit integer operations
1 -- convert for 32-bit integer operations
2 -- convert for 64-bit integer operations
3 -- convert for 32-bit floating point operations
4 -- convert for 64-bit floating point operations

Parameter 4 — ignored (optional)
2 -- Determine Mflops performance by calculating Pi

Parameter 2 -- indicate level of precision
-- current valid values are 16-28

-- less than 16 and time frame is too small
to measure

-- more than 28 and the operations count
overflows

-- personally, I recommend 22, maybe 23 to get
the steady-state Mflops reading in minimal
time

Parameter 3 -- Return original weight or attempt to unskew?
0 -- original weight
1 -- convert weight

Parameter 4 -- ignored (optional) if original weight is
desired

-- if weight is to be converted, then
0 -- convert for 16-bit integer operations
1 -- convert for 32-bit integer operations
2 -- convert for 64-bit integer operations
3 -- convert for 32-bit floating point operations
4 -- convert for 64-bit floating point operations

3 — Determine QUIPS performance by using HINT benchmark

143

Parameter 2 -- Specify nature of operations
0 -- convert for 16-bit integer operations
1 -- convert for 32-bit integer operations
2 -- convert for 64-bit integer operations
3 -- convert for 32-bit floating point operations
4 — convert for 64-bit floating point operations

Parameters 3 & 4 -- ignored (optional)
26 Nov 98 -- Developed interface
27 Nov 98 -- Finished interface

— "Mastered" variable arguments
— Implemented FORTRAN versions

28 Nov 98 -- Added option to return programmer-specified weight
-- Started implementation

29 Nov 98 — C version coded
— FORTRAN versions coded

double weight,*weightp, pi;
int argl,arg2,arg3,arg4;
int *arg2p,*arg3p,*arg4p;

va_list ap;
va_start(ap,yardstick); /* Initialize variable arguments */

argl=*yardstick;
switch(argl) {

case 0: /* Let programmer specify weight */
weightp=va_arg(ap,double*); /* Return the second argument */
weight=*weightp;
break;

case 1: /* Parse /proc/cpuinfo */
arg2p=va_arg(ap,int*);
arg2=*arg2p;
if (arg2==0) weight=parse_cpuinfo(); /* Return bogomips, straight-up */
else {

arg3p=va_arg(ap,int*) ;
arg3=*arg3p;
switch(arg3) {
case 0:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"SHORT");
break; /* Convert to HINT SHORT */

case 1:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"INT");
break; /* Convert to HINT INT */

case 2:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"LONGLONG");
break; /* Convert to HINT LONGLONG */

case 3:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"FLOAT");
break; /* Convert to HINT FLOAT */

case 4:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"DOUBLE");
break; /* Convert to HINT DOUBLE */

case 5:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"NAS");
break; /* Convert to NAS NPB-W-serial */

default:
weight=0.0;

} /* switch (arg3) */
} /* else (arg2!=0) */
break;

case 2: /* Calculate Pi & count flops */
arg2p=va_arg(ap,int*); /* Level of precision */
arg2=*arg2p;
arg3p=va_arg(ap,int*);
arg3=*arg3p;
if (arg3==0) weight=calc_pi(pow(2,arg2),&pi);

/* Return Mflops, straight-up */
else {

arg4p=va_arg(ap,int*);

144

arg4=*arg4p;
switch(arg4) {
case 0:
weight=convert_calc_pi(calc_pi
break;

case 1:
weight=convert_calc_pi(calc_pi
break;

case 2:
weight=convert_calc_pi(calc_pi
break;

case 3:
weight=convert_calc_pi(calc_pi
break;

case 4:
weight=convert_calc_pi(calc_pi
break;

case 5:
weight=convert_calc_pi(calc_pi
break;

default:
weight=0.0;

} /* switch (arg4) */
} /* else (arg3!=0) */
break;

case 3:
arg2p=va_arg(ap,int*);
arg2=*arg2p;
switch(arg2) {
case 0:
weight=run_hint("SHORT");
break;

case 1:
weight=run_hint("INT");
break;

case 2:
weight=run_hint("LONGLONG");
break;

case 3:
weight=run_hint("FLOAT");
break;

case 4:
weight=run_hint("DOUBLE");
break;

default:
weight=0.0;

} /* switch (arg2) */
break;

(pow(2,arg2),&pi),"SHORT");
/* Convert to HINT SHORT */

(pow(2,arg2),&pi),"INT");
/* Convert to HINT INT */

(pow(2,arg2),&pi),"LONGLONG");
/* Convert to HINT LONGLONG */

(pow(2,arg2),&pi),"FLOAT");
/* Convert to HINT FLOAT */

(pow(2,arg2),&pi),"DOUBLE");
/* Convert to HINT DOUBLE */

(pow(2,arg2),&pi),"NAS");
/* Convert to NAS NPB-W-serial */

/* Use HINT b/m to weigh nodes */

/* Convert to HINT SHORT */

/* Convert to HINT INT */

/* Convert to HINT LONGLONG */

/* Convert to HINT FLOAT */

/* Convert to HINT DOUBLE */

case 4:
weight=0.0;
break;

default:
weight=0.0;

} /* switch (argl) */

/* Use NAS NPB-W-serial */
/* Not yet available */

va_end(ap);
return weight;

} /* weighnode */

/* Wrap things up */

double weighnode_(int *yardstick, ...) {

See header for weighnode() for description & history

double weight,*weightp,pi;
int argl,arg2,arg3,arg4;
int *arg2p,*arg3p,*arg4p;

145

va_list ap;
va_start(ap,yardstick); /* Initialize variable arguments */

argl=*yardstick;
switch(argl) {

case 0: /* Let programmer specify weight */
weightp=va_arg(ap,double*); /* Return the second argument */
weight=*weightp;
break;

case 1: /* Parse /proc/cpuinfo */
arg2p=va_arg(ap,int*);
arg2=*arg2p;
if (arg2==0) weight=parse_cpuinfo(); /* Return bogomips, straight-up */
else {
arg3p=va_arg(ap,int*);
arg3=*arg3p;
switch(arg3) {
case 0:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"SHORT");
break; /* Convert to HINT SHORT */

case 1:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"INT");
break; /* Convert to HINT INT */

case 2:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"LONGLONG");
break; /* Convert to HINT LONGLONG */

case 3:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"FLOAT");
break; /* Convert to HINT FLOAT */

case 4:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"DOUBLE");
break; /* Convert to HINT DOUBLE */

case 5:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"NAS");
break; /* Convert to NAS NPB-W-serial */

default:
weight=0.0;

} /* switch (arg3) */
} /* else (arg2!=0) */
break;

case 2: /* Calculate Pi & count flops */
arg2p=va_arg(ap,int*); /* Level of precision */
arg2=*arg2p;
arg3p=va_arg(ap,int*);
arg3=*arg3p;
if (arg3==0) weight=calc_pi(pow(2,arg2),&pi);

/* Return Mflops, straight-up */
else {
arg4p=va_arg(ap,int*);
arg4=*arg4p;
switch(arg4) {
case 0:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"SHORT");
break; /* Convert to HINT SHORT */

case 1:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"INT");
break; /* Convert to HINT INT */

case 2:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"LONGLONG");
break; /* Convert to HINT LONGLONG */

case 3:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"FLOAT");
break; /* Convert to HINT FLOAT */

case 4:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"DOUBLE");
break; /* Convert to HINT DOUBLE */

case 5:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"NAS");
break; /* Convert to NAS NPB-W-serial */

146

default:
weight=0.0;

} /* switch (arg4) */
} /* else (arg3!=0) */
break;

case 3:
arg2p=va_arg(ap,int*) ;
arg2=*arg2p;
switch(arg2) {
case 0:
weight=run_hint("SHORT");
break;

case 1:
weight=run_hint("INT");
break;

case 2:
weight=run_hint("LONGLONG");
break;

case 3:
weight=run_hint("FLOAT");
break;

case 4:
weight=run_hint("DOUBLE");
break;

default:
weight=0.0;

} /* switch (arg2) */
break;

/* Use HINT b/m to weigh nodes */

/* Convert to HINT SHORT */

/* Convert to HINT INT */

/* Convert to HINT LONGLONG */

/* Convert to HINT FLOAT */

/* Convert to HINT DOUBLE */

case 4:
weight=0.0;
break;

/* Use NAS NPB-W-serial */
/* Not yet available */

default:
weight=0.0;

} /* switch (argl) */

va_end(ap);
return weight;

} /* weighnode_ */

/* Wrap things up */

double weighnode (int *yardstick, ...) {

See header for weighnode() for description & history
••••••A***/

double weight,*weightp,pi;
int argl,arg2,arg3,arg4;
int *arg2p,*arg3p,*arg4p;

va_list ap;
va_start(ap,yardstick);

argl=*yardstick;
switch(argl) {

case 0:
weightp=va_arg(ap,double*) ;
weight=*weightp;
break;

/* Initialize variable arguments */

/* Let programmer specify weight */
/* Return the second argument */

case 1:
arg2p=va_arg(ap,int*);
arg2=*arg2p;
if (arg2==0) weight=parse_cpuinfo();
else {

arg3p=va_arg(ap,int*);
arg3=*arg3p;
switch(arg3) {
case 0:

/* Parse /proc/cpuinfo */

/* Return bogomips, straight-up */

147

weight=convert_parse_cpuinfo(parse_cpuinfo(),"SHORT");
break; /* Convert to HINT SHORT */

case 1:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"INT");
break; /* Convert to HINT INT */

case 2:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"LONGLONG");
break; /* Convert to HINT LONGLONG */

case 3:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"FLOAT");
break; /* Convert to HINT FLOAT */

case 4:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"DOUBLE");
break; /* Convert to HINT DOUBLE */

case 5:
weight=convert_parse_cpuinfo(parse_cpuinfo(),"NAS");
break; /* Convert to NAS NPB-W-serial */

default:
weight=0.0;

} /* switch (arg3) */
} /* else (arg2!=0) */
break;

case 2: /* Calculate Pi & count flops */
arg2p=va_arg(ap,int*); /* Level of precision */
arg2=*arg2p;
arg3p=va_arg(ap,int*) ;
arg3=*arg3p;
if (arg3==0) weight=calc_pi(pow(2,arg2),&pi);

/* Return Mflops, straight-up */
else {
arg4p=va_arg(ap,int*);
arg4=*arg4p;
switch(arg4) {
case 0:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"SHORT");
break; /* Convert to HINT SHORT */

case 1:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"INT");
break; /* Convert to HINT INT */

case 2:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"LONGLONG");
break; /* Convert to HINT LONGLONG */

case 3:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"FLOAT");
break; /* Convert to HINT FLOAT */

case 4:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"DOUBLE");
break; /* Convert to HINT DOUBLE */

case 5:
weight=convert_calc_pi(calc_pi(pow(2,arg2),&pi),"NAS");
break; /* Convert to NAS NPB-W-serial */

default:
weight=0.0;

} /* switch (arg4) */
} /* else (arg3!=0) */
break;

case 3: /* Use HINT b/m to weigh nodes */
arg2p=va_arg(ap,int*);
arg2=*arg2p;
switch(arg2) {
case 0:
weight=run_hint("SHORT");
break; /* Convert to HINT SHORT */

case 1:
weight=run_hint("INT");
break; /* Convert to HINT INT */

case 2:
weight=run_hint("LONGLONG");
break; /* Convert to HINT LONGLONG */

case 3:

148

weight=run_hint("FLOAT")
break;

case 4:
weight=run_hint("DOUBLE"
break;

default:
weight=0.0;

} /* switch (arg2) */
break;

/* Convert to HINT FLOAT */

/* Convert to HINT DOUBLE */

case 4:
weight=0.0;
break;

/* Use NAS NPB-W-serial */
/* Not yet available */

default:
weight=0.0;

} /* switch (argl) */

va_end(ap);
return weight;

} /* weighnode */

/* Wrap things up */

149

C.2. metric

C.2.1. metric.h
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

/ **
* *
* PROJECT: Asymmetric Load Balancing on a Heterogeneous *
* Cluster of PCs *
* AFIT/GE/ENG/99M-02 *

PACKAGE : NodeMetric
0.2

* FILE:

AUTHOR:

HISTORY:

metric.h
0.1
Measures the performance of a node and returns an
appropriate weight

Capt Christopher A. Bohn

16 Nov 98 --
18 Nov 98 --
19 Nov 98 --

20 Nov 98 --

23 Nov 98
24 Nov 98

25 Nov 98
29 Nov 98
11 Dec 98
31 Dec 98
1 Jan 99

Version a.l begun
a.l complete
Version a.2 begun
a.2 complete
Version a.3 begun
a.3 abandoned; version a.3.1 begun
a.3.1 complete
Version a.3.2 begun -
a.3.2 complete
Version a.3.3 begun
a.3.3 complete
metric.h Version 0.1
NodeMetric Version 0.
NodeMetric 0.1.1
NodeMetric 0.1.2
NodeMetric 0.2

Objective: see above

**/

double parse_cpuinfo ();
double calc_pi (long,double*)
double run_hint (chart]);

/* parse_cpuinfo */
/**
Parses /proc/cpuinfo. Returns bogomips if /proc/cpuinfo exists,
0.0 otherwise. For now, we're only looking at bogomips; neglect cpu,
model, vendor_id ... also assume uniprocessor.

MIPS, of course, is "Million Instructions Per Second" (or, if you
prefer, "Meaningless Indicator of Performance Standard"), and BOGO
is a prefix to indicate bogusness — it's only a calculated guess.

One big advantage to this benchmark is it's cheap. No calculations
to be performed! Just parse in a file that doesn't even exist on disk.
If it does exist, then it resides in core memory!

**/

/* calc_pi */
/**

Calculates Pi by estimating the area under a curve. Returns the

150

number of Millions of FLoating Point Operations per Second for the
kernel. Accepts as a parameter the number of intervals in which to
divide the curve for the integration. Passes back a reference to the
calculated value of Pi; this is necessary, or a good optimizing compiler
will avoid calculating Pi at all, since it would never be used. This
version only works for n < (2**31-1)/6. That's just as well, since this
is intended to be a "quick'n'dirty" benchmark.

************•***/

/* run_hint */

Runs the HINT benchmark to evaluate the system's performance.
Specify the datatype to be evaluated as the parameter.
Returns the QUIPS value provided by HINT.
Assumes the compiled HINT executables are stored in a directory

called "hint" immediately below the current directory.

151

C.2.2. metric, c
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

/ **

PROJECT: Asymmetric Load Balancing on a Heterogeneous
Cluster of PCs
AFIT/GE/ENG/99M-02

* PACKAGE: NodeMetric
0.2

* FILE: metric.c
* 0.1
* Measures the performance of a node and returns
* appropriate weight
*
* AUTHOR: Capt Christopher A. Bohn

HISTORY: 16 Nov 98

18 Nov 98

19 Nov 98

20 Nov 98

23 Nov 9£
24 Nov 96

25 Nov 9

29 Nov 9
11 Dec 9
31 Dec 9

Version a.l begun *
-- Objective: parse /proc/cpuinfo *
Successfully parsed /proc/cpuinfo *
— Does not check for EOF—implement later *
a.l complete *
Version a.2 begun *
— Objective: time the calculation of pi *
Successfully calculted Pi, and experimented *
with a couple different datatype sizes. *
— Conclusion: The intrinsic datatypes large *

enough to deal with numbers > 2**31 don't *
matter here, because the execution takes *
so long as to defeat the point of the pi *
metric -- something that takes a half-hour*
to finish might as well lead us to use a *
"real" benchmark like HINT — the pi b/m *
is intended to be something fast that is *
not as naive as the cpuinfo b/m *

a.2 complete *
Version a.3 begun *
-- Objective: fork another process that will *

transmorgriphy into the serial HINT b/m *
a.3 abandoned; version a.3.1 begun *
-- Objective: take core of a.3's run_hint, *

and instead of forking and trying to *
assess the status of the child process, *
blahblahblah, we'll have the parent *
process use a system call to run the b/m, *
and the parent will stay blocked until *
the b/m is complete. *

Successfully launched HINT -- now just need *
to add some flexibility that will allow *
multiple processors to run it without *
overwriting each other's "stuff" *
a.3.1 complete *
Version a.3.2 begun -- Objective: see above *
a.3.2 complete *
Version a.3.3 begun *
-- Objective: change parse_cpuinfo to return *

bogomips instead of passing it as a *
parameter *

a.3.3 complete *
Testing constructs removed *
metric.c Version 0.1 *
NodeMetric Version 0.1 *
NodeMetric 0.1.1 *
NodeMetric 0.1.2 *

152

* 1 Jan 99 -- NodeMetric 0.2 *
* *
**/

double parse_cpuinfo () {
/ **
Parses /proc/cpuinfo. Returns bogomips if /proc/cpuinfo exists,
0.0 otherwise. For now, we're only looking at bogomips; neglect cpu,
model, vendor_id ... also assume uniprocessor.

MIPS, of course, is "Million Instructions Per Second" (or, if you
prefer, "Meaningless Indicator of Performance Standard"), and BOGO
is a prefix to indicate bogusness — it's only a calculated guess.
This benchmark is remarkably naive. There is no way we could hope

to realize the level of performance bogomips indicates. And the memory
hierarchy tends to level the field -- a node with a 600MHz processor
isn't twice as fast as a node with a 300MHz processor. But a table
lookup might be able to account for this. Caution, though: interpolating
between & extrapolating from known values in the table could be dangerous,
as that might not account for changes in memory speed &/or bandwidth.
Another issue to ponder is that there are processors for which the
bogomips does not correspond to the clock speed. Natch, in an unpipelined
nonsupercalar processor, this is to be expected ... but what about the
i80486? A problem for another day.

One big advantage to this benchmark is it's cheap. No calculations
to be performed! Just parse in a file that doesn't even exist on disk.
If it does exist, then it resides in core memory!
16 Nov 98 -- dabbled
18 Nov 98 -- successful parse of /proc/cpuinfo, passing back bogomips

-- successful return of error code if file does not exist,
i.e., this is not a Linux system

24 Nov 98 — Instead of returning -1 for error and 0 for success, and
passing bogomips as a parameter, it now takes no parameters
and returns bogomips if successful and 0.0 if not

**/
FILE *cpuinfo;
char line[31] = ""; /* More than sufficient */
double bogomips;

cpuinfo = fopen("/proc/cpuinfo"

if (cpuinfo == NULL)
return(0.0);

/* File does not exist */

else {
while (strcmpdine, "bogomips")) {

fscanf(cpuinfo,"%s",line);
} /* while (strcmp) */

/* Until we find the target */
/* I suppose I oughtta check */
/* for EOF ... later */

fscanf(cpuinfo,"%s",line);
fscanf(cpuinfo,"%s",line);
bogomips = atof(line);
fclose(cpuinfo);
return(bogomips);

} /* else (cpuinfo != NULL) */
} /* parse_cpuinfo */

/* Should be a colon */
/* The magic number we want */

double calc_pi (long n, double *globalpi) {
/**
Calculates Pi by estimating the area under a curve. Returns the
number of Millions of FLoating Point Operations per Second for the
kernel. Accepts as a parameter the number of intervals in which to
divide the curve for the integration. Passes back a reference to the
calculated value of Pi; this is necessary, or a good optimizing compiler
will avoid calculating Pi at all, since it would never be used. This
version only works for n < (2**31-1)/6. That's just as well, since this
is intended to be a "quick'n'dirty" benchmark.
Like the cpuinfo benchmark, the pi benchmark is naive, only not so

much. It actually does /some/ work, but not enough to break out of

153

the LI cache, or even the register file. This, too, should require
a table look-up to map the produced results into a useful weight.

It is interesting to note that peak Mflops is at or about n=2**17 or 18
on the Pentium II boxen I'm developing & testing this on (not including
the "infinity" values for really small values of n), but it holds a
more-or-less stable value for larger values of n. As a point of
reference, once out of the "infinity" stage (at n=2**14), the Mflops
rating grows up to the peak. Presumably, the beast cannot be sufficiently
fed for n less than 2**17. I might want to ponder why it peaks and then
stablizes.
19 Nov 98 — borrowed from cpi.c found in the MPICH 1.1 distro,

removed parallelism from it, minimized it, added
Mflops calculation

**/
double pi = *globalpi;
clock_t starttime, endtime;
long i, flopcount;
double h, x, sum, mflops, totaltime;

starttime = clock));

h = 1.0 / (double)n;
sum = 0.0;
for (i=0; i<n; i++) {
x = h * ((double)i - 0.5) ;
sum += (4.0 / (1.0 + x*x))j

}
pi = h * sum;

/* 1 flop */
/* 0 flop */
/* these are all integer ops */
/* 2 flop */
/* 4 flop */

/* 1 flop */

endtime = clock();

totaltime = (double)(endtime-starttime) / (double)CLOCKS_PER_SEC;
flopcount = 6*n+2;
mflops = ((double)flopcount / 1000000.0) / totaltime;

*globalpi = pi;
return(mflops);

} /* calc_pi */

double run_hint (char datatype!]) {
/** *****************
Runs the HINT benchmark to evaluate the system's performance.
Specify the datatype to be evaluated as the parameter.

Returns the QUIPS value provided by HINT.
Assumes the compiled HINT executables are stored in a directory

called "hint" immediately below the current directory.
20 Nov 98 -- Much experimenting with fork() & execvO, abandoned

-- Used system)) to launch HINT, with run_hint() waiting
for HINT to complete before progressing

23 Nov 98 -- Accomplished much (but not all) generalization (all
except the parsing section and testing)

24 Nov 98 — Discovered (duh!) that system() does not return the
output of the call (e.g., "pwd"), and that

system!"cd ...") does not effect a permanent change
of working directory (nuts!)
— Going to have to let the multiple copies of HINT

overwrite each other's output into the ./data
directory ... 'sokay, since I'm interested in what
HINT places on stdout ... just hope they don't
crash — eliminates need for localpath parameter

**,
char command[61]
FILE *hintout;
char line[401] =
double quips;

"mkdir

/* Enough for five lines of dots */

switch (datatype[0]) { /* Fix the datatype variable to */
/* match the executable name */
/* (don't trust the end user) */

/* Assume "SHORT" */

154

case 'S':
datatype="SHORT";
break;

case 'i':
case ' I' :

datatype="INT";
break;

case ' f' :
case 'F':

datatype=" FLOAT" ,-
break;

case '1' :
case 'L':

datatype="LONGLONG";
break;

default:
case 'd':
case 'D':

datatype="DOUBLE";
} /* switch (datatype[0]) */

/* Assume "INT" */

/* Assume "FLOAT" */

/* Assume "LONG LONG" or */
/* "LONGLONG" but not "LONG" */

/* Assume "DOUBLE" */

strcpy(command,"mkdir data")
system(command);
strcat(command,"/hint");
system(command);

/* Create appropriate directories */
/* if they don't exist */

/* This wouldn't have been needed */
/* if I was able to change */
/* the working directory! */

/* We'll accept that this will */
/* return errors for most (or */
/* all) of the processes */

strcpy(command,"hint/");
strcat(command,datatype);
hintout = popen(command,"r");

while (strcmp(line,"Finished"))
fscanf(hintout,"%s",line) ;

/* Launch HINT ... */

/* ... and take its stdout */

/* Until we find the target */

fscanf(hintout,"%s",line);
fscanf(hintout,"%s",line) ;
quips = atof(line);

/* Should be "with" */
/* The magic number we want */

pclose(hintout);
return quips;

} /* run_hint */

155

C.3. metricmap

C.3.1. metricmap.h
i **

* *
* PROJECT: Asymmetric Load Balancing on a Heterogeneous *
* Cluster of PCs *
* AFIT/GE/ENG/99M-02 *
* *
* PACKAGE: NodeMetric *
* 0.2 *
* *
* FILE: metricmap.h *
* 0.1 *
* Converts skewed performance weights into better weights *
* *

* AUTHOR: Capt Christopher A. Bohn *
* *
* HISTORY: 25 Nov 98 — Version a.l begun *
* --a.l complete *
* -- Version a.2 begun *
* — a.2 complete *
* — Version a.3 begun *
* — a.3 complete *
* 27 Nov 98 — Version a.4 begun *
* -- a.4 complete *
* 29 Nov 98 -- Version a.5 begun *
* -- a.5 complete *
* -- metricmap.h Version 0.1 *
* -- NodeMetric Version 0.1 *
* 11 Dec 98 — Nodemetric 0.1.1 *
* 31 Dec 98 -- NodeMetric 0.1.2 *
* 1 Jan 99 — NodeMetric 0.2 *
* *
**/

double convert_parse_cpuinfo (double,char[]);
double convert_calc_pi (double,char[]);

/* convert_parse_cpuinfo */
/**
Converts the bogomips returned from parse_cpuinfo into a different
weight. First argument is the value returned by parse_cpuinfo.
Second argument establishes how the value should be changed.

S -- based on HINT SHORT metric
I -- based on HINT INT metric
L -- based on HINT LONGLONG metric
F -- based on HINT FLOAT metric
D -- based on HINT DOUBLE metric

-- "none of the above" returns bogomips unchanged
**/

/* convert_calc_pi */
/**
Converts the mflops returned from calc_pi into a different
weight. First argument is the value returned by calc_pi.
Second argument establishes how the value should be changed.

S — based on HINT SHORT metric
I — based on HINT INT metric
L -- based on HINT LONGLONG metric
F — based on HINT FLOAT metric
D -- based on HINT DOUBLE metric

-- "none of the above" returns mflops unchanged
**/

156

C.3.2. metricmap. c
#include <math.h>
#include <stdio.h>
#include "nodeinfo.h"

* *
* PROJECT: Asymmetric Load Balancing on a Heterogeneous *
* Cluster of PCs *
* AFIT/GE/ENG/99M-02 *
* *
* PACKAGE: NodeMetric *
* 0.2 *
* *

* FILE: metricmap.c *
* 0.2 *
* Converts skewed performance weights into better weights *
* *

* AUTHOR: Capt Christopher A. Bohn *
* *
* HISTORY: 25 Nov 98 -- Version a.l begun *
* -- Objective: Develop interface to convert *
* bogomips & pi-determined Mflops into *
* useful weights — interface will be *
* independent of implementation -- *
* if implementation is changed, no need to *
* do full recompilation, just recompile *
* implementation & relink (just be sure to *
* type "make" /before/ you update the *
* version history in metricmap.h, or the *
* dependency on metricmap.h will force *
* the calling program to recompile *
* --a.l complete *
* -- Version a.2 begun *
* -- Objective: q&d implementation of *
* convert_cpuinfo — IF-THEN-ELSE *
* constructs should be sufficient at this *
* point -- as the map space grows, an *
* actual data structure would probably be a *
* good idea, from a maintenance and *
* cleanliness POV — structure only at this *
* point, since I have no values to plug in *
* yet *
* -- a.2 complete *
* — Version a.3 begun *
* -- Objective: same as a.2, except for *
* convert_calc_pi *
* -- a.3 complete *
* 27 Nov 98 — Version a.4 begun *
* -- Objective: provide specific values for *
* 333MHz & 400MHz Pentium II 's *
* -- a.4 complete *
* 29 Nov 98 — Version a.5 begun *
* -- Objective: if passed 0.0 (the designated *
* error weight), return 0.0 *
* -- a.5 complete *
* -- metricmap.c Version 0.1 *
* -- NodeMetric Version 0.1 *
* 11 Dec 98 — Nodemetric 0.1.1 *
* 31 Dec 98 -- NodeMetric 0.1.2 *
* -- Version 0.2 begun *
* -- Objective: remove hard-coded mapping and *
* use the maps generated by buildmap *
* -- metricmap.c 0.2 *
*. -- After buildmap is finished executing, *
* I'll test metricmap 0.2, and if all goes *
* well, /then/ I'll declare NodeMetric 0.2 *
* 1 Jan 99 — NodeMetric 0.2 *
* *

157

double convert_parse_cpuinfo (double bogomips,char factor!]) {
/ **
Converts the bogomips returned from parse_cpuinfo into a different
weight. First argument is the value returned by parse_cpuinfo.
Second argument establishes how the value should be changed.

S — based on HINT SHORT metric
I --
L --
F --
D --

25 Nov 98

27 Nov 98
29 Nov 98
31 Dec 98

based on HINT INT metric
based on HINT LONGLONG metric
based on HINT FLOAT metric
based on HINT DOUBLE metric
"none of the above" returns bogomips unchanged
-- This implementation uses an IF-THEN-ELSE construct --

future implementations should use a data structure for
maintainability -- also need to think about how to deal
with unexpected values (return closest value, inter/extra-
polate?)
-- Basic structure; still need to get actual values to
return

-- Incorporate numbers for 333MHz & 400MHz Pentium II's
-- Added a check for 0.0
-- Removed hard-coded map -- make use of dynamic map
-- Linearly interpolate between known values if need be
— Extrapolate as follows:
— Less than lowest known value, interpolate with zero

(provided in map)
-- Greater than largest known value, use largest known

value (do not extrapolate, especially to with
infinity :>)

** /

FILE »mipsfile;
nodeinfo *mipslist;
int i ;
double lower,upper,lo,hi,rise,run,diff;

mipsfile = fopen(filenamel,"r") ;
if (mipsfile == NULL) {

return bogomips;
} /* if (mipsfile == NULL) */
else {
mipslist = load(mipsfile);
fclose(mipsfile) ;

/* File does not exist */
/* Default action is no action */

/* File does exist */

lower = upper = 0.0; i = 0;
while ((upper < bogomips) && (i < mipslist[0].listsize)) {

lower = upper;
upper = mipslist[++i].key;

} /* while ((upper < bogomips)&&(!< mipslist[0].listsize)) */

if (upper == bogomips) {
if (factor[0]=='S' factor[0]=
else if (factor[0]=='I' factor[0]=
else if (factor[0]=='L' factor[0]=
else if (factor[0]=='F' factor[0]=
else if (factor[0]=='D' factor[0]=
else

} /* if (upper == bogomips) */
else {

if (i == mipslist[0].listsize) {

/* Straight-forward map */
=='s') return mipslist[i].H_short;
=='i') return mipslist[i].H_int;
=='1') return mipslist[i].H_long;
=='f') return mipslist[i].H_float;
=='d') return mipslist[i].H_double;

return bogomips;

/* Need to inference */
/* We reached the largest known */
/* value and it's too small */

if (factor[0]=='S' factor[0
else if (factor[0]=='I' factor[0
else if (factor[0]=='L' factor[0
else if (factor[0]=='F' factor[0
else if (factor[0]=='D' factor[0
else

} /* (i == mipslist[0].listsize) */
else {
run = upper-lower;
diff = bogomips-lower;
if (factor[0]=='S'

]=='s') return mipslist[i].H_short;
]=='i') return mipslist[i].H_int;
]=='1') return mipslist[i].H_long;
]=='f) return mipslist [i] .H_float,•
]=='d') return mipslist[i].H_double;

return bogomips;

/* Interpolate */

factor[0]=='s') {

158

hi = mipslist[i].H_short;
lo = mipslist[i-1].H_short;
rise = hi - lo;
return fabs(lo+diff*rise/run); /* fabs() just to be safe */

} /* HINT SHORT */
else if (factor[0]=='I' || factor[0]=='i') {

hi = mipslist[i].H_int;
lo = mipslist[i-1].H_int;
rise = hi - lo;
return fabs(lo+diff*rise/run); /* fabs() just to be safe */

} /* HINT INT */
else if (factor[0]=='L' || factor[0]=='1') {

hi = mipslist[i].H_long;
lo = mipslist[i-1].H_long;
rise = hi - lo;
return fabs(lo+diff*rise/run); /* fabs() just to be safe */

} /* HINT LONG */
else if (factor[0]=='F' || factor[0]=='f) {

hi = mipslist[i].H_float;
lo = mipslist[i-1].H_float;
rise = hi - lo;
return fabs(lo+diff*rise/run); /* fabs() just to be safe */

} /* HINT FLOAT */
else if (factor[0]=='D' || factor[0]=='d') {

hi = mipslist[i].H_double;
lo = mipslist[i-1].H_double;
rise = hi - lo;
return fabs(lo+diff*rise/run); /* fabs() just to be safe */

} /* HINT DOUBLE */
else /* none of the above */

return bogomips;
} /* else (i < mipslist[0].listsize) */

} /* else (upper > bogomips) */
} /* else (mipsfile != NULL) */

} /* convert_jparse_cpuinfo */

double convert_calc_pi (double mflops,char factor!]) {

Converts the mflops returned from calc_pi into a different
weight. First argument is the value returned by calc_pi.
Second argument establishes how the value should be changed.

S -- based on HINT SHORT metric
I — based on HINT INT metric
L — based on HINT LONGLONG metric
F — based on HINT FLOAT metric
D — based on HINT DOUBLE metric

-- "none of the above" returns mflops unchanged
25 Nov 98 — This implementation uses an IF-THEN-ELSE construct —

future implementations should use a data structure for
maintainability — also need to think about how to deal

with unexpected values (return closest value, inter/extra-
polate?)
-- Basic structure; still need to get actual values to

return
27 Nov 98 — Incorporate numbers for 333MHz & 400MHz Pentium II's
29 Nov 98 — Added a check for 0.0
31 Dec 98 -- Removed hard-coded map -- make use of dynamic map

-- Linearly interpolate between known values if need be
-- Extrapolate as follows:
-- Less than lowest known value, interpolate with zero

(provided in map)
— Greater than largest known value, use largest known

value (do not extrapolate, especially to with
infinity :>)

FILE *flopsfile;
nodeinfo *flopslist;
int i ;
double lower,upper,lo,hi,rise,run,diff;

159

flopsfile = fopen(filename2,"r")
if (flopsfile == NULL) {
return mflops;

} /* if (flopsfile == NULL) */
else {

flopslist = load(flopsfile);
fclose(flopsfile);

/* File does not exist */
/* Default action is no action */

/* File does exist */

lower = upper = 0.0; i = 0;
while ((upper < mflops) && (i < flopslist[0].listsize)) {

lower = upper;
upper = flopslist[++i].key;

} /* while ((upper < mflops) && (i < flopslist[0].listsize))

if (upper == mflops) { /* Straight-forward map */
if (factor[0]=='S' factor[0]=='
else if (factor[0]=='I' factor[0]=='
else if (factor[0]=='L' factor[0]=='
else if (factor[0]=='F' factor[0]=='
else if (factor[0]=='D' factor[0]=='
else

} /* if (upper == mflops) */
else {

if (i == flopslist[0].listsize) {

s') return flopslist[i].H_short;
i') return flopslist[i].H_int;
1') return flopslist[i].H_long;
f) return flopslist[i].H_float;
d1) return flopslist[i].H_double;

return mflops;

(factor[0]=
factor[0]=
factor[0]=
factor[0]=
factor [0] =

factor[0]==
factor[0]==
factor[0]==
factor[0]==
factor[0]==

if
hi =
lo =
rise

/*

}

if
else if
else if
else if
else if
else

} /* (i == flopslist[0].listsize) */
else {
run = upper-lower;
diff = mflops-lower;

(factort0]=='S' || factor[0]
flopslist[i].H_short;
flopslist[i-1].H_short;
hi - lo;

return fabs(lo+diff*rise/run
/* HINT SHORT */

else if (factor[0]=='I' || factor[0]=
hi = flopslist[i].H_int;
lo = flopslist[i-1].H_int;
rise = hi - lo;
return fabs(lo+diff*rise/run); /*

} /* HINT INT */
else if (factor[0]=='L' || factor[0]=

hi = flopslist[i].H_long;
lo = flopslist[i-1].H_long;
rise = hi - lo;
return fabs(lo+diff*rise/run); /*

} /* HINT LONG */
else if (factor[0]=='F' || factor[0]=

hi = flopslist[i].H_float;
lo = flopslist[i-1].H_float;
rise = hi - lo;
return fabs(lo+diff*rise/run); /*

} /* HINT FLOAT */
else if (factor[0]=='D' || factor[0]=

hi = flopslist[i].H_double;
lo = flopslist[i-1].H_double;
rise = hi - lo;
return fabs(lo+diff*rise/run

} /* HINT DOUBLE */
else /* none of the above */

return mflops;
} /* else (i < flopslist[0].listsize)

} /* else (upper > mflops) */
/* else (flopsfile != NULL) */

/* Need to inference */
/* We reached the largest known */
/* value and it's too small */

•s')
•i')
'1')
'f)
•d')

return flopslist[i].H_short;
return flopslist[i].H_int;
return flopslist[i].H_long;
return flopslist[i].H_float;
return flopslist[i].H_double;
return mflops;

/* Interpolate */

) {

}
fabs() just to be safe */

= 'i') {

fabs() just to be safe */

= 'l") {

fabs() just to be safe */

= "f) {

fabsO just to be safe */

■■•d') {

/* fabs() just to be safe */

} /* convert_calc_pi */

160

CA. buildmap.c
#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "metric.h"
#include "nodeinfo.h"

* *
* PROJECT: Asymmetrie Load Balancing on a Heterogeneous *
* Cluster of PCs *
* AFIT/ENG/GE99M-02 *
* *

* PACKAGE: NodeMetric *
* 0.2 *
* *
* FILE: buildmap.c *
* 0.1 *
* Builds the maps used by metricmap.c *
* *
* AUTHOR: Capt Christopher A. Bohn *
* *
* HISTORY: 28 Dec 98 — Version a.l begun *
* -- Objective: basic implementation -- *
* -- Basic structure in place -- still *
* need to get the struct nodeinfo material *
* working *
* — Passes the "eges -c buildmap.c" test *
* --a.l complete *
* 29 Dec 98 — Version a.2 begun *
* -- Objective: finish struct nodeinfo-related *
* material *
* — Moving the struct nodeinfo definition *
* from buildmap.c to nodeinfo.h *
* -- metricmap.c will also need it *
* -- a.2 complete *
* -- Version a.3 begun *
* -- Objective: write front-end *
* -- a.3 complete; won't declare Version 0.1 until*
* I write load() & save() (in another file) *
* -- for that matter, I still gotta test *
* 30 Dec 98 -- Version a. 4 begun *
* -- Objective: cleaning-up / deobfuscation *
* -- a.4 complete *
* -- The bloody thing compiles & links (woo-hoo!),*
* but for initial testing, I'm going to disable*
* the HINT portion, since they, urn, take a *
* really, really long time *
* -- Yee-haw! Core dump. Debugging time. *
* 31 Dec 98 -- Version a.5 begun *
* -- Objective: fix bar() right after I fix *
* foo() *
* -- I must really need a good night's *
* sleep ... there's a big problem with *
* the data structure *
* — I'm going to recode this as a linear *
* list (for now) ... it's a VERY simple *
* data structure, and for my initial *
* tests, at least, the time-complexity *
* (for small 'n') of 0(n) should be *
* unappreciable *
* -- a.5 complete *
* -- Still trying to track down that segmentation *
* fault *
* are now written identically, and improperly *
* -- Doh! I'm allocating memory for the lists *
* in the wrong part of the program! *
* -- Move preload 0 into loadO & allocate *

161

* there *
* — buildmap.c 0.1 *
* -- NodeMetric 0.1.2 *
* 1 Jan 99 -- NodeMetric 0.2 *
* *

void initialize (nodeinfo **);
void add_node (nodeinfo **, nodeinfo);
int compare (void *, void *);

#define min(x,y) (((x)<(y))?(x):(y))
#define max(x,y) (((x)>(y))?(x):(y))

int main () {
FILE *mipsfile,*flopsfile;
nodeinfo *mipslist,*flopslist;
nodeinfo mipsnode,flopsnodelo,flopsnodehi;
double H_short,H_int,H_long,H_float,H_double;
time_t timel,time2;
int i;
double pi,mflops;

mipsfile = fopen(filenamel,"r");
flopsfile = fopen(filename2,"r") ;
if ((mipsfile == NULL) || (flopsfile == NULL)) {

initialize(Smipslist); /* Files do not exist */
initialize(Sflopslist);

} /* if ((mipsfile == NULL) || (flopsfile == NULL)) */
else { /* Files do exist */
mipslist = load(mipsfile);
flopslist = load(flopsfile);
fclose(mipsfile);fclose(flopsfile);

} /* else ((mipsfile != NULL) && (flopsfile != NULL)) */

/* assess current node */
timel = time(NULL);
mipsnode.key = parse_cpuinfo();
time2 = time(NULL),•
printf("%d sec required to read bogomips.\n",

(int)difftime(time2,timel));
flopsnodelo.key = 1000000.0; /* initialize for max/min */
flopsnodehi.key = 0.0; /* initialize for max/min */
for (i = 21 ; i < 28 ; i++) {

timel = time(NULL);
mflops = calc_pi(pow(2,i),&pi);
time2 = time(NULL);
flopsnodelo.key = min(flopsnodelo.key,mflops);
flopsnodehi.key = max(flopsnodelo.key,mflops);
printf("%d sec required to calculate pi at precision level %d.\n",

(int)difftime(time2,timel),i);
} /* for i */
printf ("« Starting HINT SHORT benchmark >>\n");
timel = time(NULL);
H_short = run_hint("SHORT");
time2 = time(NULL);
printf("%fmin required to complete HINT SHORT benchmark.\n",

difftime(time2,timel)/60.0);
printf ("« Starting HINT INT benchmark >>\n");
timel = time(NULL);
H_int = run_hint("INT");
time2 = time(NULL);
printf("%fmin required to complete HINT INT benchmark.\n",

difftime(time2,timel)/60.0);
printf ("« Starting HINT LONG benchmark >>\n");
timel = time(NULL),-
H_long = run_hint("LONG");
time2 = time(NULL);
printf("%fmin required to complete HINT LONG benchmark.\n",

difftime(time2,timel)/60.0);
printf ("« Starting HINT FLOAT benchmark >>\n");

162

timel = time(NULL);
H_float = runjnint("FLOAT");
time2 = time(NULL);
printf("%fmin required to complete HINT FLOAT benchmark.\n",

difftime(time2,timel)/60.0);
printf ("« Starting HINT DOUBLE benchmark >>\n");
timel = time(NULL);
H_double = run_hint("DOUBLE");
time2 = time(NULL);
printf("%fmin required to complete HINT DOUBLE benchmark.\n",

difftime(time2,timel)/60.0);
mipsnode.H_short = flopsnodelo.H_short = flopsnodehi.H_short = H_short;
mipsnode.H_int = flopsnodelo.H_int = flopsnodehi.H_int = H_int;
mipsnode.H_long = flopsnodelo.H_long = flopsnodehi.H_long = H_long;
mipsnode.H_float = flopsnodelo.H_float = flopsnodehi.H_float = H_float;
mipsnode.H_double = flopsnodelo.H_double = flopsnodehi.H_double = H_double;

/* add info on current node to lists */
add_node(&mipslist,mipsnode);
add_node(&flopslist,flopsnodelo);
add_node(&flopslist,flopsnodehi);

mipsfile = fopen(filenamel,"w");
flopsfile = fopen(filename2,"w");
save(mipsfile,mipslist) ;
save(flopsfile,flopslist);
fclose(mipsfile);fclose(flopsfile);

return 0;
} /* main!) */

void initialize (nodeinfo *A[]) {
(*A) = calloc(3,sizeof(nodeinfo)) ;
(*A)[0].listsize = 0;
(*A)[0].key = 0.0;
(*A)[0].H_short = 0.0;
(*A)[0].H_int = 0.0;
(*A)[0].H_long = 0.0;
(*A)[0].H_float = 0.0;
(*A)[0].H_double = 0.0;

} /* initialize!) */

void add_node (nodeinfo *A[], nodeinfo node) {
int listsize = (*A)[0].listsize + 1;
(*A)[listsize] = node;
qsort((*A), (listsize+1), sizeof(nodeinfo), compare);
(*A)[0].listsize = listsize;

} /* add_node() */

int compare (void *va, void *vb) {
/* was going to just return *a.key-*b.key, but that's a real, so then I

was going to return (int)(*a.key-*b.key), but the truncation of 0.x or
-0.x would provide invalid results, so... */

nodeinfo *a=va, *b=vb;
return (((*a).key< (*b).key) ? -1 : (((*a).key> (*b).key) ? 1 : 0));

} /* compare() */

163

C.5. nodeinfo.h
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

* *
* PROJECT: Asymmetric Load Balancing on a Heterogeneous *
* Cluster of PCs *
* AFIT/ENG/GE99M-02 *
* *
* PACKAGE: NodeMetric *
* 0.2 *
* *
* FILE: nodeinfo.h *
* 0.1 *
* Key parts for obtaining & storing node metric information *
* *

* AUTHOR: Capt Christopher A. Bohn *
* *
* HISTORY: 28 Dec 98 — buildmap.c a.l has struct nodeinfo *
* 29 Dec 98 — Version a.l begun *
* — Objective: finish struct nodeinfo *
* definition *
* -- Moved the struct nodeinfo definition from *
* buildmap.c to nodeinfo.h *
* -- metricmap.c will also need it *
* -- Prototyped load() & save() *
* — a.l complete *
* 30 Dec 98 — Version a.2 begun *
* -- Objective: write load() & save() *
* — a.2 complete *
* 31 Dec 98 — Version a.2.1 begun *
* -- Objective: rename nodeinfo.heapsize to *
* nodeinfo.listsize *
* — a.2.1 complete *
* -- nodeinfo.h 0.1 *
* -- NodeMetric 0.1.2 *
* 1 Jan 99 -- NodeMetric 0.2 *
* *

#define filenamel "ABC_MIPS.dat"
#define filename2 "ABC_FLOPS.dat"

typedef struct {
double key; /* This would be either bogomips or mflops*/
double H_short; /* The values generated by HINT */
double H_int;
double H_long;
double H_float;
double H_double;
int listsize; /* only used in the 0th element of the array */

} nodeinfo;

nodeinfo *load(FILE *);
void save(FILE *,nodeinfo *) ;

nodeinfo »load(FILE *infile) {
/••A***

Reads the linear list stored in infile. Actually, it'll read in any
array, so long as the elements of the array are struct nodeinfo's,
and the listsize attribute of the first element indicates how many
more elements there are.
29 Dec 98 — prototyped
3 0 Dec 98 -- coded

164

31 Dec 98 -- tweaked

nodeinfo *A,B;
int i;
char line[31] = "";

fscanf(infile,"%s",line);
B.key = atof(line);
fscanf(infile,"%s",line);
B.H_short = atof(line);
fscanf(infile,"%s",line);
B.H_int = atof(line);
fscanf(infile,"%s",line);
B.H_long = atof(line);
fscanf(infile,"%s",line) ;
B.H_float = atof(line);
fscanf(infile,"%s",line);
B.H_double = atof(line);
fscanf(infile,"%s",line) ;
B.listsize = atoi(line);

A = calloc(B.listsize+3,sizeof(nodeinfo));/* Why +3? Because +1 for the */
A[0] = B; /* Oth element, and +2 because */

/* buildmap will add up to two */
for (i = 1 ; i <= A[0].listsize ; i++) {/* elements */

fscanf(infile,"%s",line);
A[i].key = atof(line);
fscanf(infile,"%s",line) ;
A[i].H_short = atof(line);
fscanf(infile,"%s",line) ;
A[i].H_int = atof(line);
fscanf(infile,"%s",line);
A[i].H_long = atof(line);
fscanf(infile,"%s",line) ;
A[i].H_float = atof(line);
fscanf(infile,"%s",line) ;
A[i].H_double = atof(line);
fscanf(infile,"%s",line) ;
A[i].listsize = atoi(line);

} /* for i */

return A;
} /* loadO */

void save(FILE *outfile, nodeinfo A[]) {

Writes the linear list to outfile.
29 Dec 98 -- prototyped
3 0 Dec 98 -- coded
31 Dec 98 -- tweaked

a***/

int i;
for (i = 0 ; i <= A[0].listsize ; i++) {

fprintf(outfile,"%e\n",A[i].key);
fprintf(outfile,"%e\n",A[i].H_short);
fprintf(outfile,"%e\n",A[i].H_int);
fprintf(outfile,"%e\n",A[i].H_long);
fprintf(outfile,"%e\n",A[i].H_float);
fprintf(outfile,"%e\n",A[i].H_double);
fprintf(outfile,"%d\n",A[i].listsize) ;

} /* for i */
} /* saved */

165

C.6. Makefile

PROJECT: Asymmetric Load Balancing on a Heterogeneous #
Cluster of PCs #
AFIT/GE/ENG/99M-02 #

PACKAGE: NodeMetric #
0.2 #

FILE: metric/Makefile #
#0.2 #

AUTHOR: Capt Christopher A. Bohn #

HISTORY: 29 Nov 98 — NodeMetric Version 0.1 #
10 Dec 98 -- Version a.l begun #
-- Objective: make all object files #
--a.l complete #
11 Dec 98 — Version a.2 begun #
— Objective: make HINT, too #
-- a.2 complete #
-- metric/Makefile Version 0.1 #
-- NodeMetric 0.1.1 #
29 Dec 98 — Version 0.2 begun #
-- Objective: make buildmap #
— metric/Makefile 0.2 #
31 Dec 98 — NodeMetric 0.1.2 #
1 Jan 99 — NodeMetric 0.2 #
M #

Begin user configurable options ###

CC = egcs
LINKER = egcs
OPTFLAGS = -03

HINTCC = gcc
HINT may not like your normal compiler

HINTDIR = ./hint
Location of HINT source files

BINDIR = /home/cbohn/thesis/NPB-mod2/bin
Where your application is located; HINT will be

placed /below/ this dir

End user configurable options ###

EXECS = buildmap
OBJS = metric.o metricmap.o weighnode.o

default: $(OBJS)

all: $(OBJS) $(EXECS)

buildmap: buildmap.o metric.o
$(LINKER) $(OPTFLAGS) -o buildmap buildmap.o metric.o -lm

buildmap.o: buildmap.c metric.h nodeinfo.h

metric.o: metric.c

metricmap.o: metricmap.c nodeinfo.h

weighnode.o: weighnode.c metric.h metricmap.h

HINT:
@ cd $(HINTDIR); make CC=$(HINTCC) CFLAGS=$(OPTFLAGS)
@- mkdir $(BINDIR)/hint
@ mv $(HINTDIR)/SHORT $(BINDIR)/hint

166

mv $(HINTDIR)/INT
mv $(HINTDIR)/LONGLONG
mv $(HINTDIR)/FLOAT
mv $(HINTDIR)/DOUBLE

$(BINDIR)/hint
$(BINDIR)/hint
$(BINDIR)/hint
$(BINDIR)/hint

help:
@ echo
@ echo
@ echo
@ echo
@ echo
@ echo
@ echo
@ echo

Options are:
metric.o"
metricmap.o"
weighnode.o"
HINT"
all"
clean"
veryclean"

(default is *.o) (all is buildmap & *.o)'

clean:
-f core *.o

veryclean: clean
@- rm -f hint/core hint/*.o hint/*-

$(CC) $(OPTFLAGS) -C $*.C

167

Appendix D: Tabulated Raw Results

This appendix contains the raw data for the charts presented in Chapter iv.

Performance figures are in Section D.l (Table D-l through Table D-3). Cells in the tables

for which no corresponding data was collected are shaded gray.

The sizes of the partitions generated by the different weighting approaches are

listed in Section D.2 (Table D-4 through Table D-l8). The tables list the width of the

column-striped partitions before asymmetric load balancing is introduced. For each of the

three weightings (BogoMIPS, Mflops, and QUIPS), the tables include the weight for each

node, the "fair share" partition size based on the reported weights before rounding and

corrections, and the final tile width for each node.

Finally, Section D.3 (Table D-l9) contains performance data collected during

development, and not as a part of formal experimentation. It is included because it is

relevant to Section 4.6.1.

168

D.
Tab

1. Performance
e D-l. Non-load balanced performance - power-of-two number of processors.

1 processor 2 processor 4 processor 8 processor
1x200

1x333
1x400

1x450

1x20(1

1x450

1x333

1x450
1x400
1x450

1x200
1x333
1x400
1x450

1x333
2x400
1x450

3x400
1x450

1x200
1x333
5x400
1x450

1x333
6x400
1x450

Unbal

Chkbd

0.81
nan

2.96
nan

3.54
nan

3.94
nan

38.42 84.01 112.39 7.27
nan

11.00
nan

13.14
nan

141.94 344.55

2.96
nan

3.54
nan

3.96
nan

7.28
nan

158.59 346.79

2.96
nan

3.54
nan

3.96
nan

7.28
nan

160.07 347.13

2.96
nan

3.54
nan

3.96
nan

7.28
nan

160.34 347.49

2.96
nan

3.54
nan

3.96
nan

connectn
timed out

160.52 348.92

3.96
nan

3.96
nan

3.96
nan

3.96
nan

3.96
nan

Unbal

Row
Striped

60.08 163.57
60.09 167.49
60.13 174.72
60.15 174.8
60.17 174.88

Unbal
Col
Striped

42.7 55.15 59.99 38.37 84.93 101.44 76.14 153.95 170.99 166.75 14h«

42.7 55.55 60.05 38.5 85.42 112.23 76.63 165.07 171.45 169.71 353.61
42.7 55.57 60.05 38.52 86.69 112.27 76.87 165.13 171.95 170.05 364.21

42.71 55.62 60.05 38.54 86.7 112.35 77.96 165.22 172.06 174.86 367.98
42.71 55.66 60.08 38.76 86.78 112.53 77.97 165.39 172.43 175.15 370.35

60.12
60.12
60.12
60.13
60.13

169

Table D-2. Load balanced performance - power- of-two number of processors.
1 processor 2 processor 4 processor 8 processor

1x200
1x333

1x400
1x450

1x200

1x450

1x333

1x450
1x400
1x450

1x200
1x333
1x400
1x450

1x333
2x400
1x450

3x400
1x450

1x200
1x333
5x400
1x450

1x333
6x400
1x450

Equal
Weight
RwStr

1.75
1.76
1.77

Equal
Weight
Col

Striped

36.32 63.73 82.29 75.08 159.33 164.88 152.25 307.76
36.89 68.15 92.09 75.1 159.48 164.88 160.33 312.32
36.94 69.09 92.1 75.34 159.48 165.08 164.67 312.73
36.95 70.34 92.29 75.45 159.75 165.23 165.32 312.88
36.98 71.88 92.47 75.99 159.88 165.27 165.7 313.18

Bogo

MIPS

Col

Striped

65.71 80.24 96.27 125.43 156.61 164.08 220.02 294.19
65.79 81.09 96.36 125.45 156.7 164.42 267.2 299.93

65.8 84.96 96.47 125.46 156.78 164.82 267.54 300.84
65.85 84.97 96.52 125.47 156.91 165.26 267.65 300.94
65.88 84.98 96.55 125.48 165.77 165.59 268.8 301.9

Mflops

Col
Striped

70.24 78 96.5 131.83 158.3 165.85 201.72 291.85
71.03 82.38 96.51 131.87 158.3 166.3 240.26 295.46
71.06 85.01 96.55 131.93 158.37 166.55 264.84 296.21
71.07 85.15 96.71 132.23 158.41 167.13 265.84 296.27

71.1 85.17 96.72 134.26 158.45 167.15 265.97 299.38
QUIPS
Col
Striped

63.93 69.75 96.97 142.64 159.51 179.07 254.39 307.78
63.93 79.53 97.01 142.66 163.35 179.4 282.83 319.87
63.94 82.14 97.02 142.83 164.29 179.41 284.28 329.99
63.95 86.4 97.05 142.9 164.73 180.23 284.78 330.13
63.95 86.43 97.11 142.91 164.74 181.36 285.57 331.05

170

Table D-3. Load balanced & non-load balanced
performance - non-power-of-two number of processors.

3
processor

7
processor

9
processor

10
processor

11
processor

12
processor

1x333
1x400
1x450

1x333
5x400
1x450

1x200
1x333
5x400
1x450

2x333
6x400
1x450

1x200
3x333
6x400
1x450

4x333
6x400
1x450

1x21»
4x333
6x400
1x450

Unbal

Col
Striped

121.09 293.64 122.26 96.39 123.11 117.86 259.99

121.15 297.1 188.81 119.3 124.11 120.15 264.3

121.16 298.28 278.96 167.37 213.49 122.35 269.26

121.22 299.87 290.61 318.3 230.92 132.77 275.63

121.22 301.34 317.44 347.32 257.27 211.18 280.43

Equal
Weight
Col

Striped

126.26 269.21 198.47 105.95 118.71 109.91 77.01

126.26 272.27 243.63 162.19 131.16 118.09 78.24

126.38 274.36 255.87 196.32 131.27 127.75 102.81

126.4 275.12 256.79 254.03 168.28 135.1 108.06

126.61 276.87 280.72 295.09 175.44 273.85 109.94

Bogo

MIPS
Col
Striped

126.7 248.07 235.69 134.41 120.64 59.74 127.5

126.86 271.21 256.91 264.25 133.08 99.7 168.87

126.92 271.23 308.09 264.69 166.42 141.23 171.7

126.95 271.95 317.38 276.99 204.18 182.98 176.21

126.98 272.5 321.39 298.71 211.22 341.76 235.77

Mflops

Col
Striped

125.76 256.26 217.29 146.76 158.83 85.8 127.37

126.09 266.82 229.28 149.48 204.25 252.25 147.61

126.37 270.84 258.54 151.42 216.18 304.83 156.58

126.4 271.34 273.35 277.54 223.76 334.77 159.17

127.24 272.29 274.17 334.84 318.17 344.89 229.04

QUIPS
Col
Striped

133.31 275.26 232.54 131.95 116.04 85.21 102.42

133.84 289.51 311.23 135.6 122.78 133.81 145.63

134.31 291.77 331.31 136.58 125.8 276.51 152.31

134.53 292.31 331.55 206.91 178.6 340.42 169.05

134.86 295.13 347.72 251.68 200.34 342.54 267.83

D.2. Partitioning

Table D-4. Two-processor partitioning (1x200 1x450).
Original
Partition

BogoMIPS Mflops QUIPS

Weight Suggest'n Part'n Weight Suggest' n Part'n Weight Suggest'n Part'n

ABC 11 32 445.64 54.29358 54 71.9 49.7309 50 16148280 49.95508 50

ABC12 32 79.67 9.706421 10 20.63 14.2691 14 4540104 14.04492 14

Table D-5. Two- processor partitioning (1x333 1x450).
Original
Partition

BogoMIPS Mflops QUIPS

Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC03 32 332.6 27.35197 27 54.71 27.65532 28 12153570 27.48331 27

ABC11 32 445.64 36.64803 37 71.9 36.34468 36 16148280 36.51669 37

Table D-6. Two-processor partitioning (1x400 1x450)
Original
Partition

BogoMIPS Mflops QUIPS

Weight Suggest' n Part'n Weight Suggest'n Part'n Weight Suggest' n Part'n

ABC09 32 396.49 30.13235 30 64.53 29.80816 30 14875540 30.68721 31

ABC11 32 445.64 33.86765 34 74.02 34.19184 34 16148280 33.31279 33

171

Table D-7. Three-processor partitioning (1x333 1x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest' n Part'n

ABC03 22 332.6 18.12025 18 53.54 18.03737 18 12153570 18.01472 18

ABC09 21 396.49 21.60101 22 64.53 21.73985 22 14875540 22.04938 22

ABC11 21 445.64 24.27874 24 71.9 24.22277 24 16148280 23.93591 24

Table D-8. Four-processor partitioning (1x200 1x333 1x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC03 16 332.6 16.96939 17 53.54 16.42567 16 12153570 16.3007 16

ABC09 16 396.49 20.22908 20 64.53 19.79733 20 14875540 19.95148 20

ABC11 16 445.64 22.73673 23 69.91 21.44787 22 16148280 21.65851 22

ABC12 16 79.67 4.064796 4 20.63 6.329131 6 4540104 6.089311 6

Ta ble D-9. Four-processor partitioning (1x333 2x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest' n Part'n Weight Suggest'n Part'n

ABC03 16 332.6 13.54769 14 55.92 14.04088 14 12153570 13.39861 13
ABC06 16 396.49 16.1501 16 64.53 16.20275 16 14875540 16.39942 16
ABC09 16 396.49 16.1501 16 64.53 16.20275 16 14875540 16.39942 16
ABC11 16 445.64 18.15211 18 69.91 17.55361 18 16148280 17.80255 19

r Iable D-10. Four-processor partitioning (3x40() 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC06 16 396.49 15.51905 15 64.53 15.77028 16 14875540 15.66493 15
ABC07 16 396.49 15.51905 16 64.53 15.77028 16 14875540 15.66493 16
ABC08 16 396.49 15.51905 16 62.91 15.37437 15 14875540 15.66493 16
ABC11 16 445.64 17.44284 17 69.91 17.08508 17 16148280 17.00521 17

Table D-ll. Seven-processor partitioning (1x333 6x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC03 10 332.6 7.710536 8 53.54 7.702731 8 12153570 7.575301 8
ABC05 9 396.49 9.191673 9 62.91 9.050781 9 14875540 9.2719 9
ABC06 9 396.49 9.191673 9 64.53 9.283848 9 14875540 9.2719 9
ABC07 9 396.49 9.191673 9 64.53 9.283848 9 14875540 9.2719 9
ABC08 9 396.49 9.191673 9 62.91 9.050781 9 14875540 9.2719 9
ABC09 9 396.49 9.191673 9 64.53 9.283848 9 14875540 9.2719 9
ABC11 9 445.64 10.3311 11 71.9 10.34416 11 16148280 10.0652 11

172

Table D-12. Eight-processor partitioning (1x200 1x333 5x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS

Weight Suggest'n Part'n Weight Suggest' n Part'n Weight Suggest'n Part'n

ABC03 8 332.6 7.494261 5 53.54 7.313115 5 12153570 7.254533 5

ABC05 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9

ABC06 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9

ABC07 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9

ABC08 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9

ABC09 8 396.49 8.933853 9 64.53 8.814257 9 14875540 8.879291 9

ABC11 8 445.64 10.04132 10 71.9 9.820937 10 16148280 9.638997 10

ABC12 8 79.67 1.795153 4 20.46 2.794664 4 4540104 2.710013 4

Table D-13. Eight-processor partitioning (1x333 6x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS

Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC03 8 332.6 6.742219 7 53.54 6.705597 7 12153570 6.616715 7

ABC05 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8

ABC06 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8

ABC07 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8

ABC08 8 396.49 8.03735 8 62.91 7.879139 8 14875540 8.098625 8

ABC09 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8

ABC10 8 396.49 8.03735 8 64.53 8.082035 8 14875540 8.098625 8

ABC11 8 445.64 9.033682 9 71.9 9.005088 9 16148280 8.791537 9

Table D-14. Nine-processor partitioning (2x333 6x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest' n Part'n

ABC02 8 332.6 6.09964 6 53.54 6.078479 6 12153570 5.996735 6

ABC03 7 332.6 6.09964 6 54.71 6.211311 6 12153570 5.996735 6

ABC05 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7

ABC06 7 396.49 7.271335 7 62.91 7.142269 7 14875540 7.339792 7

ABC07 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7

ABC08 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7

ABC09 7 396.49 7.271335 7 64.53 7.32619 7 14875540 7.339792 7

ABC10 7 396.49 7.271335 8 64.53 7.32619 8 14875540 7.339792 8

ABC11 7 445.64 8.17271 9 69.91 7.93699 9 16148280 7.967779 9

Ta We D-15 . Ten-processor partitioning (3x333 6x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC01 7 332.6 5.568886 5 54.71 5.68748 5 12153570 5.482985 5
ABC02 7 332.6 5.568886 5 53.54 5.56585 5 12153570 5.482985 5
ABC03 7 332.6 5.568886 5 53.54 5.56585 5 12153570 5.482985 5
ABC05 7 396.49 6.638628 7 62.91 6.539926 7 14875540 6.71098 7
ABC06 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7
ABC07 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7
ABC08 6 396.49 6.638628 7 62.91 6.539926 7 14875540 6.71098 7
ABC09 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7
ABC10 6 396.49 6.638628 7 64.53 6.708336 7 14875540 6.71098 7
ABC11 6 445.64 7.461571 7 69.91 7.267624 7 16148280 7.285166 7

173

Table D-16. Eleven-processor partitioning (1x200 3x333 6x400 1x450)
Original
Partition

BogoMIPS Mflops QUIPS

Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC01 6 332.6 5.455184 4 54.71 5.465193 4 12153570 5.312951 4

ABC02 6 332.6 5.455184 4 54.71 5.465193 4 12153570 5.312951 4

ABC03 6 332.6 5.455184 4 53.54 5.348317 5 12153570 5.312951 4

ABC05 6 396.49 6.503084 6 64.53 6.446151 6 14875540 6.502865 6

ABC06 6 396.49 6.503084 7 64.53 6.446151 6 14875540 6.502865 7

ABC07 6 396.49 6.503084 7 64.53 6.446151 6 14875540 6.502865 7

ABC08 6 396.49 6.503084 7 64.53 6.446151 7 14875540 6.502865 7

ABC09 6 396.49 6.503084 7 64.53 6.446151 7 14875540 6.502865 7

ABC10 6 396.49 6.503084 7 64.53 6.446151 7 14875540 6.502865 7

ABC11 5 445.64 7.309225 7 69.91 6.98358 8 16148280 7.059245 7

ABC12 5 79.67 1.306718 4 20.63 2.06081 4 4540104 1.984713 4

Tab e D-17. Eleven-processor partitioning (4x333 6x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest'n Part'n

ABC01 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5

ABC02 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5

ABC03 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5
ABC04 6 332.6 5.123105 5 53.54 5.117095 5 12153570 5.050316 5
ABC05 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6

ABC06 6 396.49 6.107216 6 62.91 6.012634 6 14875540 6.181408 6

ABC07 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6

ABC08 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6

ABC09 6 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6

ABC10 5 396.49 6.107216 6 64.53 6.167466 6 14875540 6.181408 6

ABC 11 5 445.64 6.864283 8 69.91 6.68166 8 16148280 6.710285 8

Table D-18. Twelve-processor partitioning (1x20 0 4x33 3 6x400 1x450).
Original
Partition

BogoMIPS Mflops QUIPS
Weight Suggest'n Part'n Weight Suggest'n Part'n Weight Suggest n Part'n

ABC01 6 332.6 5.02672 4 53.54 4.963727 4 12153570 4.905705 4
ABC02 6 332.6 5.02672 4 53.54 4.963727 4 12153570 4.905705 4

ABC03 6 332.6 5.02672 4 54.71 5.072198 5 12153570 4.905705 4

ABC04 6 332.6 5.02672 5 52.43 4.860818 5 12153570 4.905705 5
ABC05 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6
ABC06 5 396.49 5.992316 6 62.91 5.832426 6 14875540 6.004409 6
ABC07 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6
ABC08 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6
ABC09 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6
ABC 10 5 396.49 5.992316 6 64.53 5.982617 6 14875540 6.004409 6
ABC11 5 445.64 6.73514 7 69.91 6.4814 6 16148280 6.518142 7
ABC12 5 79.67 1.204085 4 20.63 1.91262 4 4540104 1.832582 4

174

D.3. Additional Results Obtained During Development

Table D-19. Results collected during development, using NPB-serial, hub, and
switch. All processors are 400 MHz Pentium IIs.

NBP-serial
1 processor

hub switch
2 processor

hub switch
4 processor

hub switch

Unbal
Chkbd

38.71 49.06 48.97 96.88 96.09 176.92 181.84

38.73 49.17 49.16 96.99 96.10 178.67 181.87

38.78 49.21 49.19 97.05 96.11 178.68 181.87

Unbal
Row
Striped

48.82 95.38

Bi^^ü^

172.85

48.95 95.39 173.14

49.00 95.40 173.17

Unbal
Col
Striped

48.77 96.12 171.21

48.78 96.13 171.79
48.79 96.14 173.14

175

References

[1] Adamson, Iain T. Data Structures and Algorithms: A First Course. London:
Springer, 1996.

[2] Aeronautical Systems Center. "CFD Overview," updated 18 November 1998.
http://www.asc.hpc.mil/PET/CFD/overview.html.

[3] Aeronautical Systems Center. "CFD-04; Grid Generation Support for Grand
Challenge Problems," updated 19 November 1998.
http://www.asc.hpc.mil/PET/CFD/Projects/cfd04.html.

[4] Aeronautical Systems Center. "Introduction to Parallel Programming," updated
20 August 1997.
http://www.asc.hpc.mil/webtrn/pll_18/html/parallel-intro/ParallelIntro.html.

[5] Aeronautical Systems Center. "Introduction to Parallel Programming: The Need for
Faster Machines," updated 20 August 1997.
http://www.asc.hpc.mi1/webtrn/p 11_18/html/parallel-intro/ParallelIntro.html#needf
orfastermachines .

[6] Alta Technology. "Alta Technology Menu," http://www.altatech.com/ , printed
28 January 1999.

[7] Anderson, John D., Jr. Computational Fluid Dynamics: The Basics with
Applications. New York: McGraw-Hill, 1995.

[8] Anderson, Thomas E., David E. Culler, David A. Patterson, and the NOW Team.
"A Case for NOW (Networks of Workstations)," IEEE Micro 15:1
(January 1995), pp54-64.

[9] Argonne National Laboratory. "MPICH-A Portable Implementation of MPI,"
http://www.mcs.anl.gov/Projects/mpi/mpich/index.html, printed 18 August 1998.

[10] Bailey, David H., Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo,
and Maurice Yarrow. "The NAS Parallel Benchmarks 2.0," December 1995.
NAS-95-020.
http://science.nas.nasa.gov/Pubs/TechReports/NASreports/NAS-95-011/NAS-95-
020.ps .

176

[11] Barszcz, E., R. Fatoohi, V. Venkatkrishnan, and S. Weeratunga. "Solution of
Regular, Sparse Triangular Linear Systems on Vector and Distributed-Memory
Multiprocessors," April 1993. RNR-93-007.
http://science.nas.nasa.gov/Pubs/TechReports/RNRreports/ebarszcz/RNR-93-007/
RNR-93-007.ps .

[12] Bell, Gordon. "The Future of High Performance Computers in Science and
Engineering," Communications of the ACM 32:9 (September 1989), ppl091-1101.

[13] Beowulf Mailing List Archive http://www.beowulf.org/listarchives/beowulf/ .

[14] Brey, Barry B. The Intel Microprocessors: 8086/8088,80186/80188,80286,
80386, 80486, Pentium, and Pentium Pro Processor, 4th ed. Upper Saddle
River, NJ: Prentice Hall, 1997.

[15] Chandy, K. Mani, and Jayadev Misra. Parallel Programming Design: A
Foundation. Reading, MA: Addison-Wesley, 1987.

[16] Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. Cambridge, MA: The MIT Press, 1990.

[17] Corradi, Antonio, Letizia Leonardi, and Franco Zambonelli. "Diffusive Load-
Balancing Policies for Dynamic Applications," IEEE Concurrency 7:1
(January-March 1999), pp22-31.

[18] Cox, Alan. "UK.LINUX.ORG," printed 5 February 1999.
http://www.uk.linux.org/.

[19] Cygnus Solutions, "egcs Project Home Page," updated 15 January 1999.
http://egcs.cygnus.com/.

[20] Davis, Stephen R. C++for Dummies, 2d ed. Foster City, CA: IDG Books
Worldwide, Inc., 1996.

[21] DCG Computers, Inc. "Do you want to compute faster, DCG Inc can show you the
way," http://www.dcginc.com/ , updated 12 January 1999.

[22] Decker, Thomas, Reinhard Lüling, and Stefan Tschöke. "A Distributed Load
Balancing Algorithm for Heterogeneous Parallel Computing Systems,"
Proceedings, International Conference on Parallel and Distributed Processing
Techniques and Applications, 1998, pp951-957.

[23] Department of Energy. "The Accelerated Strategic Computing Initiative (ASCI),"
http://www.asci.doe.gov/ , printed 9 February 1999.

177

[24] Dietz, Hank. "Linux Parallel Processing Sites," updated 23 March 1998,
http://yara.ecn.purdue.edu/~pplinux/Sites/.

[25] Dongarra, Jack J., Hans W.Meuer, and Erich Strohmaier. "TOP500
Supercomputer Sites," 1 lth ed. (18 June 1988),
http://www.top500.org/lists/1998/06/top500_9806.ps.gz.

[26] Dongarra, Jack J., Hans W.Meuer, and Erich Strohmaier. "TOP500
Supercomputer Sites," 12th ed. (5 November 1998),
http://www.top500.Org/lists/1998/ll/top500_981 l.ps.gz.

[27] Dowd, Kevin, and Charles Severance. High Performance Computing, 2d ed.
Cambridge, MA: O'Reilly and Associates, 1998.

[28] Dubrovsky, Alexander, Roy Friedman, and Assaf Schuster. "Load Balancing in a
Distributed Shared Memory System," International Journal of Applied Software
Techniques, vol. 3 (March 1998), ppl67-202,
http://www.cs.technion.ac.il/~assaf/publications/alex.doc .

[29] Ellis, T.M.R., Ivor R. Philips, and Thomas M. Lahey. Fortran 90 Programming.
Harlow, England: Addison-Wesley, 1994.

[30] Gilly, Daniel, and the Staff of O'Reilly & Associates, Inc. UNIX in a Nutshell:
System V Edition. Cambridge: O'Reilly & Associates, 1992.

[31] Gindhart, David C. A Comparative Analysis of Networks of Workstations and
Massively Parallel Processors for Signal Processing. MSCE thesis,
AFIT/GCE/ENG/97D-01. Graduate School of Engineering, Air Force Institute of
Technology (AETC), Wright-Patterson AFB OH, December 1997.

[32] Grassmann, Winfried Karl, and Jean-Paul Tremblay. Logic and Discrete
Mathematics: A Computer Science Perspective. Upper Saddle River, NJ:
Prentice Hall, 1996.

[33] Greenfield, Larry. The Linux User's Guide, Beta-1. [51], 1996.

[34] Gustafson, John L., and Quinn O. Snell, "HINT: A New Way to Measure Computer
Performance," updated 21 Oct 97,
http://www.scl.ameslab.gov/Publications/HINT/ComputerPerformance.html,
printed 26 Aug 98.

[35] Hennessy, John L., and David A. Patterson. Computer Architecture: A
Quantitative Approach, 2d ed. San Francisco: Morgan Kaufmann Publishers,
1996.

178

[36] High Performance Computing Modernization Program Office. "Computational
Fluid Dynamics(CFD)," updated 8 January 1999.
http://www.hpcmo.hpc.mil/Htdocs/CTAs/cfd.html.

[37] High Performance Computing Modernization Program Office. "Computational
Electromagnetics and Acoustics(CEA)," updated 30 September 1998.
http://www.hpcmo.hpc.mil/Htdocs/CTAs/cea.html.

[38] High Performance Computing Modernization Program Office. "HPCMP
Computational Technology Areas," printed 17 January 1999.
http://www.hpcmo.hpc.mil/Htdocs/CTAs/CTAs.html.

[39] "HINT (Hierarchical INTegration)," ftp://ftp.scl.ameslab.gov/pub/hint.

[40] Howe, Denis. "The Free On-Line Dictionary of Computing," 27 October 98,
http://wombat.doc.ic.ac.uk/.

[41] HPCwire. "HPC Community Honors its Best, Brightest, & Fastest," HPCwire
(18 December 1998) article 14485.

[42] Hughes, William F., and John A. Brighton. Schaum 's Outline of Theory and
Problems of Fluid Dynamics, 2d ed. New York: McGraw-Hill, 1991.

[43] Hwang, Kai and Zhiwei Xu. Scalable Parallel Computing: Technology,
Architecture, Programming. Boston: McGraw-Hill, 1997.

[44] Ince, D.C. An Introduction to Discrete Mathematics, Formal System Specification,
and Z, 2d ed. Oxford: Clarendon Press, 1992.

[45] Intel Corporation. Intel Express 510T Switch User Guide. Hillsboro, OR: Intel
Corporation, 1997.

[46] Kelley, Al, and Ira Pohl. A Book on C: Programming in C, 2d ed. Redwood City,
CA: The Benjamin/Cummings Publishing Company, Inc., 1990.

[47] Kirsch, Christian, Florain Lohoff, and Andre von Raison. "CLOWN - Cluster of
Working Nodes," iX (January 1999).
http://www.heise.de/ix/artikel/E71999/01/010/ .

[48] Kumar, Vipin, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to
Parallel Computing: Design and Analysis of Algorithms. Redwood City CA:
The Benjamin/Cummings Publishing Company, 1994.

179

[49] Latin, Robert M. The Influence of Surface Roughness on Supersonic High
Reynolds Number Turbulent Boundary Layer Flow. PhD dissertation,
AFIT/DS/ENY/98M-02. Air Force Institute of Technology (AETC), Wright-
Patterson AFB OH, September 1998.

[50] Ligon, Walter B. III. "BEOWULF Underground FAQ - What IS a BEOWULF
parallel processing computer?" printed 20 January 1999.
http://webwulf.parl.clemson.edU/underground/faq.html#whatis .

[51] The Linux Documentation Project (various authors),
http://MetaLab.unc.edu/LDP/ldp.html.

[52] Merkey, Phil. "The Beowulf Consortium," updated 7 October 1998,
http://www.beowulf.org/consortium.html.

[53] Merkey, Phil. "Beowulf Project at CESDIS," updated 11 September 1998,
http://www.beowulf.org/.

[54] Merkey, Phil. "Beowulf Software," updated 20 January 1999.
http://www.beowulf.org/software/software.html.

[55] Merkey, Phil. "Re: Number of subscribers to Beowulf Mailing List." Electronic
mail to author, 4 February 1999.

[56] Microsoft Corporation. "Microsoft Windows," updated 15 January 1999.
http://www.microsoft.com/windows/.

[57] Milton, J.S., and Jesse C. Arnold. Introduction to Probability and Statistics:
Principles and Applications for Engineering and the Computing Sciences, 3d ed.
New York: McGraw-Hill, 1995.

[58] MindShare Inc. and Tom Shanley. Pentium Pro and Pentium II System
Architecture, 2d ed. Reading MA: Addison-Wesley, 1998.

[59] Myricom. "Myrinet Products Index," updated 17 April 1998.
http://www.myri.com/myrinet/.

[60] National Science Foundation. "NSF Report of the Grand Challenges, National
Challenges, and Multidisciplinary Challenges Grantees Works," updated
13 January 1998. http://www.cise.nsf.gov/general/challenge/execsummary.html.

[61] NAS Parallel Benchmarks 2.3. Author's examination of source code downloaded
from [99].

[62] Netlib. "Benchmark Programs and Reports," printed 1 February 1999.
http://www.netlib.org/benchmark/.

180

[63] Paralogic, Inc. "Paralogic, Inc.," http://www.plogic.com/ , printed 28 January 1999.
See also Paralogic, Inc. "xtreme MACHINES,"
http://www.xtreme-machines.com/ , printed 28 January 1999.

[64] Patterson, David A., and John L. Hennessy. Computer Organization and Design:
The Hardware/Software Interface. San Francisco: Morgan Kaufmann Publishers,
1994.

[65] Pentium Compiler Group. "Pentium Compiler Group," updated 12 December 1998.
http://www.goof.com/pcg/.

[66] Radajewski, Jacek, and Douglas Eadline. "Beowulf HOWTO" vl. 1.1
(22 November 1998), in [51].

[67] Raymond, Eric S. "The Jargon File," v4.0.0 (25 June 1996),
http://www.tuxedo.org/~esr/jargon/ . Corresponds to Raymond, Eric S. The New
Hacker's Dictionary, 3d ed. Cambridge, MA: The MIT Press, 1996.

[68] Raymond, Eric S. "The Cathedral and the Bazaar," vl.40 (11 August 1998),
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.ps .

[69] Raymond, Eric S. "Homesteading the Noosphere," vl.10 (11 July 1998),
http://www.tuxedo.org/~esr/writings/homesteading/homesteading.ps .

[70] Red Hat Software, Inc. "What is Linux?" printed 20 January 1999.
http://www.redhat.com/linux_what.phtml.

[71] Reggiani, Luca. "PC Clusters," updated April 1998,
http://www.ce.unipr.it/~lucareg/.

[72] Ridge, Daniel, Donald Becker, Phillip Merkey, and Thomas Sterling. "Beowulf:
Harnessing the Power of Parallelism in a Pile-of-PCs," Proceedings, IEEE
Aerospace, 1997. http://cesdis.gsfc.nasa.gov/beowulf/papers/aa97/final.ps .
(Presentation Slides) http://www.beowulf.org/slides/index.html.

[73] Robbins, Carla Anne. "New High-Speed PCs Raise Risk of Nuclear Proliferation,"
iX (14 December 1998).
http://www.wsj.com/public/current/articles/SB 13589580119560500.htm.

[74] Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. Object-Oriented Modeling and Design. Englewood Cliffs, NJ:
Prentice Hall, 1991.

181

[75] Saini, Subhash, and David H. Bailey. "NAS Parallel Benchmarks Results 3-95,"
April 1995. NAS-95-011.
http://science.nas.nasa.gov/Pubs/TechReports/NASreports/NAS-95-011/NAS-95-
Oll.ps.

[76] Salamon, Wayne. "TCP Performance Drop in Linux," printed 11 February 1999.
http://www.multikxon.nist.gov/scalable/misc_info/Linux_TCP.html.

[77] Salmon, John, Christopher Stein, and Thomas Sterling. "Scaling of Beowulf-class
Distributed Systems," Proceedings, IEEE/ACM Supercomputing (CD-ROM),
1998, \sc98\TechPapers\sc98_FullAbstracts\Salmon793W7.htm.

[78] Saphir, William, Alex Woo, and Maurice Yarrow. "NAS Parallel Benchmarks 2.1
Results," August 1996. NAS-96-010.
http://science.nas.nasa.gov/Software/NPB/Reports/NAS-96-010/NAS-96-010.ps.

[79] Sharifi, Mohsen, and Kamran Karimi "DIPC: The Linux Way of Distributed
Programming," Linux Journal 57 (January 1999), pplO-17.

[80] Silicon Graphics, Inc. "Silicon Graphics - Cray T3E Datasheets: Cray T3E-1200,"
printed 25 February 1999, http://www.sgi.com/t3e/t3e_1200.html.

[81] Silva, Luis Moura. "Number-Crunching with Java Applications," Proceedings,
International Conference on Parallel and Distributed Processing Techniques and
Applications, 1998, pp379-385.

[82] Snell, Quinn, Glenn Judd, and Mark Clement. "Load Balancing in a Heterogeneous
Supercomputing Environment," Proceedings, International Conference on
Parallel and Distributed Processing Techniques and Applications, 1998,
pp951-957.

[83] The Standard Performance Evaluation Corporation. "Welcome To SPEC," updated
21 August 1998, http://www.spec.org/ .

[84] Sterling, Thomas, Donald J. Becker, John E. Dorband, Daniel Savarese, Udaya A.
Ranawake, and Charles V. Packer. "Beowulf: A Parallel Workstation for
Scientific Computing," Proceedings, International Conference on Parallel
Processing, 1995. http://www.beowulf.org/papers/ippc95/final.ps .

[85] Sterling, Thomas, Tom Cwik, Don Becker, John Salmon, Mike Warren, and Bill
Nitzberg. "An Assessment of Beowulf-class Computing for NASA Requirements:
Initial Findings from the First NASA Workshop on Beowulf-class Clustered
Computing," Proceedings, IEEE Aerospace Conference , 1998.
http://loki-www.lanl.gov/papers/p312.ps .

182

[86] Tanenbaum, Andrew S. Distributed Operating Systems. Upper Saddle River, NJ:
Prentice Hall, 1995.

[87] Tanaka, Y., M. Matsuda, K. Kubota, and M. Sato. "Performance Improvement by
Overlapping Computation and Communication on SMP Clusters," Proceedings,
International Conference on Parallel and Distributed Processing Techniques and
Applications, 1998, pp275-282.

[88] Tweten, Dave. "Whitney Project Home Page," updated 10 December 1998.
http://parallel.nas.nasa.gov/Parallel/ProjectsAVhitney/.

[89] University of Mannheim. "TOP500 Supercomputing Sites," updated
19 November 1998. http://www.top500.org/.

[90] Valloppillil, Vinod. "Open Source Software: A (New?) Development
Methodology," vl.00 (11 August 1998), with annotations by Eric S. Raymond,
aka "The Halloween Document," http://www.opensource.org/halloweenl.html.

[91] Van der Linden, Peter. Just Java. Mountain View, CA: SunSoft Press, 1996.

[92] Van Dorst, Wim. "BogoMips mini-HOWTO" (13 January 1999), in [51].

[93] Wall, Larry, patch (1) man page.

[94] Warren, Michael S., Donald J. Becker, M. Patrick Goda, John K. Salmon, and
Thomas Sterling. "Parallel Supercomputing with Commodity Components,"
Proceedings, International Conference on Parallel and Distributed Processing
Techniques and Applications, 1997. http://loki-www.lanl.gov/papers/pdpta97/ .

[95] Warren, Michael S., John K. Salmon, Donald J. Becker, M. Patrick Goda, Thomas
Sterling, and Gregoire S. Winckelmans. "Pentium Pro Inside: I. A Treecode at
430 Gigaflops on ASCI Red, II. Price/Performance of $50/Mflop on Loki and
Hyglac," Proceedings, IEEE/ACM Supercomputing, 1997,
http://loki-www.lanl.gov/papers/sc97 .

[96] Warren, Michael S., Timothy C. Germann, Peter S. Lomdahl, David M. Beazley,
and John K. Salmon. "Avalon: An Alpha/Linux Cluster Achieves 10 Gflops for
$ 150k," Proceedings, IEEE/ACM Supercomputing (CD-ROM), 1998,
\sc98\TechPapers\sc98_FullAbstracts\Warrenl549\index.htm.

[97] Warren, Michael S., and M. Patrick Goda. "Loki - Commodity Parallel
Processing," updated 17 April 1998. http://loki-www.lanl.gov/ .

[98] Wirzenius, Lars. The Linux System Administrators' Guide, 0.6. [51], 1997.

183

[99] Woo, Alex. "The NAS Parallel Benchmarks," updated 1 August 1997.
http://science.nas.nasa.gov/Software/NPB/.

[100] Yarrow, Maurice. Telephone interview with author, 22 January 1999.

[101] Yarrow, Maurice, and Rob Van der Wijngaart. "Communication Improvement for
the LU NAS Parallel Benchmark: A Model for Efficient Parallel Relaxation
Schemes," November 1997. NAS-97-032.
http://science.nas.nasa.gov/Software/NPB/Reports/NAS-97-032/NAS-97-032.ps.

[102] Yates, Dustin E. Modeling and Simulation Support for Parallel Algorithms in a
High-Speed Network. MSCE thesis, AFIT/GCS/ENG/97D-20. Graduate School
of Engineering, Air Force Institute of Technology (AETC), Wright-Patterson AFB
OH, December 1997.

184

Vita

Captain Christopher Alan Bonn was bora on June 7, 1970 in Fort Walton Beach,

Florida. After graduating from Desert High School, Edwards, California in 1988, he

attended Purdue University, where he received a Bachelor of Science in Electrical

Engineering. Upon graduation, he was commissioned a second lieutenant in the United

States Air Force on December 21, 1992.

His first assignment was to Minot Air Force Base, North Dakota, where he served

in various positions, culminating as Chief, Command Post Operations, Fifth Bomb Wing.

While stationed at Minot AFB, Captain Bohn earned a Master of Science from the

University of North Dakota, in Space Studies. Following his permanent change of station

in August 1997, he enrolled in the Air Force Institute of Technology.

Permanent Address: 16454 Green Pines Dr
Ballwin MO 63011

cbohn @ computer.org

185

